Sergey P. Shary
Novosibirsk State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey P. Shary.
Reliable Computing | 2002
Sergey P. Shary
The main subject of this work is mathematical and computational aspects of modeling of static systems under interval uncertainty and/or ambiguity. A cornerstone of the new approach we are advancing in the present paper is, first, the rigorous and consistent use of the logical quantifiers to characterize and distinguish different kinds of interval uncertainty that occur in the course of modeling, and, second, the systematic use of Kaucher complete interval arithmetic for the solution of problems that are minimax by their nature. As a formalization of the mathematical problem statement, concepts of generalized solution sets and AE-solution sets to an interval system of equations, inequalities, etc., are introduced. The major practical result of our paper is the development of a number of techniques for inner and outer estimation of the so-called AE-solution sets to interval systems of equations. We work out, among others, formal approach, generalized interval Gauss-Seidel iteration, generalized preconditioning and PPS-methods. Along with the general nonlinear case, the linear systems are treated more thoroughly.
Reliable Computing | 1996
Sergey P. Shary
In this paper, theidentification problem, thetolerance problem, and thecontrol problem are treated for the interval linear equation Ax=b. These problems require computing an inner approximation of theunited solution set Σ∃∃(A, b)={x ∈ ℝn | (∃A ∈ A)(Ax ∈ b)}, of thetolerable solution set Σ∀∃(A, b)={x ∈ ℝn | (∀A ∈ A)(Ax ∈ b)}, and of thecontrollable solution set Σ∃∀(A, b)={x ∈ ℝn | (∀b ∈ b)(Ax ∈b)} respectively. Analgebraic approach to their solution is developed in which the initial problem is replaced by that of finding analgebraic solution of some auxiliary interval linear system in Kaucher extended interval arithmetic. The algebraic approach is proved almost always to give inclusion-maximal inner interval estimates of the solutionsets considered. We investigate basic properties of the algebraic solutions to the interval linear systems and propose a number of numerical methods to compute them. In particular, we present the simple and fastsubdifferential Newton method, prove its convergence and discuss numerical experiments.AbstractБ этой работе рассматриваютсяэa¶rt;aчa u¶rt;eнmuфuxaцuu, эa¶rt;aчa o ¶rt;onyckax н эa¶rt;aчa o¶rt; ynpaвlenuu для интервальной линейной системы Ax=b, требующие нахожления внутренней оценки дляоб Σ∃∃(A, b)={x ∈ ℝn | (∃A ∈ A)(Ax ∈ b)}, Σ∀∃(A, b)={x ∈ ℝn | (∀A ∈ A)(Ax ∈ b)}, и Σ∃∀(A, b)={x ∈ ℝn | (∀b ∈ b)(Ax ∈b)} соответственно. Развиваетсян к их решению, при котором исходная задача заменяется задачей отысканиян для некоторой вспомогательной интервальной линейной системы в расширенной интервальной арифметике Каухера. Показано, что алгебраический нодход почти всегда дает максимальные по включению внутренние оценки для рассматриваемых множеств решений. Исследуются основные свойства алгебраическнх решений интервальных систем, обсужлаются численные метолы для их нахожления. Б частности, мы предалагаем простой и быстрыйн, доказываем его сходимость и приводим результаты численных экспериментов с ним.
SIAM Journal on Numerical Analysis | 1995
Sergey P. Shary
For interval linear algebraic systems
Reliable Computing | 2001
Sergey P. Shary
{\bf A}x = {\bf b}
Reliable Computing | 1999
Sergey P. Shary
, we consider the problem of component-wise evaluation of the set
Reliable Computing | 2001
Sergey P. Shary
\Sigma _{\exists \exists } ({\bf A},{\bf b}) = \{ {A^{ - 1} b\mid A \in {\bf A},b \in {\bf b}} \}
Optimization Letters | 2016
Sergey P. Shary; Irene A. Sharaya
formed by all solutions of
Reliable Computing | 1997
Sergey P. Shary
Ax = b
Reliable Computing | 2011
Irene A. Sharaya; Sergey P. Shary
when A and b vary independently in
Reliable Computing | 2015
Vladik Kreinovich; Sergey P. Shary
{\bf A}