Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Paltsev is active.

Publication


Featured researches published by Sergey Paltsev.


Science | 2009

Indirect Emissions from Biofuels: How Important?

Jerry M. Melillo; John M. Reilly; David W. Kicklighter; Angelo Costa Gurgel; Timothy W. Cronin; Sergey Paltsev; Benjamin S. Felzer; Xiaodong Wang; Andrei P. Sokolov; C. Adam Schlosser

Biofuel Backfire For compelling economical, geopolitical, and environmental reasons, biofuels are considered an attractive alternative to fossil fuels for meeting future global energy demands. Melillo et al. (p. 1397, published online 22 October), however, suggest that a few serious drawbacks related to land use need to be considered. Based on a combined biogeochemistry and economic model, indirect land use (for example, clearing forested land for food crops to compensate for increased biofuel crop production on current farmlands) is predicted to generate more soil carbon loss than directly harvesting biofuel crops. Furthermore, increased fertilizer use for biofuels will add large amounts of nitrous oxide—a more effective heat-trapping molecule than carbon dioxide—to the atmosphere. Policy decisions regarding land and crop management thus need to consider the long-term implications of increased biofuel production. Land-use changes associated with biofuel production are predicted to increase greenhouse gas emissions. A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that indirect land use will be responsible for substantially more carbon loss (up to twice as much) than direct land use; however, because of predicted increases in fertilizer use, nitrous oxide emissions will be more important than carbon losses themselves in terms of warming potential. A global greenhouse gas emissions policy that protects forests and encourages best practices for nitrogen fertilizer use can dramatically reduce emissions associated with biofuels production.


Journal of Climate | 2009

Probabilistic Forecast for Twenty-First-Century Climate Based on Uncertainties in Emissions (Without Policy) and Climate Parameters

Andrei P. Sokolov; Peter H. Stone; Chris E. Forest; Ronald G. Prinn; Marcus C. Sarofim; Mort Webster; Sergey Paltsev; Courtney Adam Schlosser; David W. Kicklighter; Stephanie Dutkiewicz; John M. Reilly; Chien Wang; Benjamin S. Felzer; Jerry M. Melillo; Henry D. Jacoby

Abstract The Massachusetts Institute of Technology (MIT) Integrated Global System Model is used to make probabilistic projections of climate change from 1861 to 2100. Since the model’s first projections were published in 2003, substantial improvements have been made to the model, and improved estimates of the probability distributions of uncertain input parameters have become available. The new projections are considerably warmer than the 2003 projections; for example, the median surface warming in 2091–2100 is 5.1°C compared to 2.4°C in the earlier study. Many changes contribute to the stronger warming; among the more important ones are taking into account the cooling in the second half of the twentieth century due to volcanic eruptions for input parameter estimation and a more sophisticated method for projecting gross domestic product (GDP) growth, which eliminated many low-emission scenarios. However, if recently published data, suggesting stronger twentieth-century ocean warming, are used to determine...


Environmental Modeling & Assessment | 2012

Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model

Jennifer Morris; Sergey Paltsev; John M. Reilly

Marginal abatement cost (MAC) curves, relationships between tonnes of emissions abated and the CO2 (or greenhouse gas (GHG)) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of emissions trading. They have also been used to produce reduced-form models to examine situations where solving the more complex model underlying the MAC is difficult. Some important issues arise in such applications: (1) Are MAC relationships independent of what happens in other regions?, (2) are MACs stable through time regardless of what policies have been implemented in the past?, and (3) can one approximate welfare costs from MACs? This paper explores the basic characteristics of MAC and marginal welfare cost (MWC) curves, deriving them using the MIT Emissions Prediction and Policy Analysis model. We find that, depending on the method used to construct them, MACs are affected by policies abroad. They are also dependent on policies in place in the past and depend on whether they are CO2-only or include all GHGs. Further, we find that MACs are, in general, not closely related to MWCs and therefore should not be used to derive estimates of welfare change. We also show that, as commonly constructed, MACs may be unreliable in replicating results of the parent model when used to simulate GHG policies. This is especially true if the policy simulations differ from the conditions under which the MACs were simulated.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Temperature increase of 21st century mitigation scenarios

D.P. van Vuuren; Malte Meinshausen; Gian-Kasper Plattner; Fortunat Joos; Kuno M. Strassmann; Steven J. Smith; T. M. L. Wigley; S. C. B. Raper; Keywan Riahi; F. de la Chesnaye; M.G.J. den Elzen; J. Fujino; Kejun Jiang; N. Nakicenovic; Sergey Paltsev; John M. Reilly

Estimates of 21st Century global-mean surface temperature increase have generally been based on scenarios that do not include climate policies. Newly developed multigas mitigation scenarios, based on a wide range of modeling approaches and socioeconomic assumptions, now allow the assessment of possible impacts of climate policies on projected warming ranges. This article assesses the atmospheric CO2 concentrations, radiative forcing, and temperature increase for these new scenarios using two reduced-complexity climate models. These scenarios result in temperature increase of 0.5–4.4°C over 1990 levels or 0.3–3.4°C less than the no-policy cases. The range results from differences in the assumed stringency of climate policy and uncertainty in our understanding of the climate system. Notably, an average minimum warming of ≈1.4°C (with a full range of 0.5–2.8°C) remains for even the most stringent stabilization scenarios analyzed here. This value is substantially above previously estimated committed warming based on climate system inertia alone. The results show that, although ambitious mitigation efforts can significantly reduce global warming, adaptation measures will be needed in addition to mitigation to reduce the impact of the residual warming.


Climate Policy | 2008

Assessment of U.S. Cap-and-Trade Proposals

Sergey Paltsev; John M. Reilly; Henry D. Jacoby; Angelo Costa Gurgel; Gilbert E. Metcalf; Andrei P. Sokolov; Jennifer F. Holak

In 2007 the US Congress began considering a set of bills to implement a cap-and-trade system to limit the nations greenhouse gas (GHG) emissions. The MIT Integrated Global System Model (IGSM)—and its economic component, the Emissions Prediction and Policy Analysis (EPPA) model—were used to assess these proposals. In the absence of policy, the EPPA model projects a doubling of US greenhouse gas emissions by 2050. Global emissions, driven by growth in developing countries, are projected to increase even more. Unrestrained, these emissions would lead to an increase in global CO2 concentration from a current level of 380 ppmv to about 550 ppmv by 2050 and to near 900 ppmv by 2100, resulting in a year 2100 global temperature 3.5–4.5°C above the current level. The more ambitious of the Congressional proposals could limit this increase to around 2°C, but only if other nations, including developing countries, also strongly controlled greenhouse gas emissions. With these more aggressive reductions, the economic cost measured in terms of changes in total welfare in the United States could range from 1.5% to almost 2% by the 2040–2050 period, with 2015 CO2-equivalent prices between


Climatic Change | 2012

Analysis of climate policy targets under uncertainty

Mort Webster; Andrei P. Sokolov; John M. Reilly; Chris E. Forest; Sergey Paltsev; Adam Schlosser; Chien Wang; David W. Kicklighter; Marcus C. Sarofim; Jerry M. Melillo; Ronald G. Prinn; Henry D. Jacoby

30 and


Environmental Research Letters | 2012

Shale gas production: potential versus actual greenhouse gas emissions

Sergey Paltsev

55, rising to between


Environmental Science & Technology | 2012

Using land to mitigate climate change: hitting the target, recognizing the trade-offs.

John M. Reilly; Jerry M. Melillo; Yongxia Cai; David W. Kicklighter; Angelo Costa Gurgel; Sergey Paltsev; Timothy W. Cronin; Andrei P. Sokolov; Adam Schlosser

120 and


B E Journal of Economic Analysis & Policy | 2010

Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures

Sebastian Rausch; Gilbert E. Metcalf; John M. Reilly; Sergey Paltsev

210 by 2050. This level of cost would not seriously affect US GDP growth but would imply large-scale changes in its energy system.


Archive | 2008

Sharing the Burden of GHG Reductions

Henry D. Jacoby; Mustafa H. Babiker; Sergey Paltsev; John M. Reilly

Although policymaking in response to the climate change threat is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions paths developed originally for a study by the U.S. Climate Change Science Program. The resulting uncertainty in temperature change and other impacts under these targets is used to illustrate three insights not obtainable from deterministic analyses: that the reduction of extreme temperature changes under emissions constraints is greater than the reduction in the median reduction; that the incremental gain from tighter constraints is not linear and depends on the target to be avoided; and that comparing median results across models can greatly understate the uncertainty in any single model.

Collaboration


Dive into the Sergey Paltsev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry D. Jacoby

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrei P. Sokolov

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ronald G. Prinn

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Kicklighter

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Valerie J. Karplus

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jerry M. Melillo

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mort Webster

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge