Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Tkachuk is active.

Publication


Featured researches published by Sergey Tkachuk.


Journal of Cell Science | 2005

Urokinase-induced activation of the gp130/Tyk2/Stat3 pathway mediates a pro-inflammatory effect in human mesangial cells via expression of the anaphylatoxin C5a receptor

Nelli Shushakova; Natalia Tkachuk; Marc Dangers; Sergey Tkachuk; Joon-Keun Park; Koji Hashimoto; Hermann Haller; Inna Dumler

Glomerular mesangial cells (MCs) are central to the pathogenesis of progressive glomeruli-associated renal diseases. However, molecular mechanisms underlying changes in MC functions still remain poorly understood. Here, we show that in MCs, the urokinase-type plasminogen activator (uPA) induces, via its specific receptor (uPAR, CD87), upregulated expression of the complement anaphylatoxin C5a receptor (C5aR, CD88), and modulates C5a-dependent functional responses. This effect is mediated via the interaction of the uPA-specific receptor (uPAR, CD87) and gp130, a signal transducing subunit of the receptor complexes for the IL-6 cytokine family. The Janus kinase Tyk2 and the transcription factor Stat3 serve as downstream components in the signaling cascade resulting in upregulation of C5aR expression. In vivo, expression of C5aR and uPAR was increased in the mesangium of wild-type mice in a lipopolysaccharide (LPS)-induced model of inflammation, whereas in uPAR–/– animals C5aR expression remained unchanged. This is the first demonstration in vitro and in vivo that uPA acts in MCs as a modulator of immune responses via control of immune-competent receptors. The data suggest a novel role for uPA/uPAR in glomeruli-associated renal failure via a signaling cross-talk between the fibrinolytic and immune systems.


Journal of Molecular and Cellular Cardiology | 2014

oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4.

Yulia Kiyan; Sergey Tkachuk; Denise Hilfiker-Kleiner; Hermann Haller; Bianca Fuhrman; Inna Dumler

The pathogenesis of atherosclerosis involves an imbalanced lipid metabolism and a deregulated immune response culminating in chronic inflammation of the arterial wall. Recent studies show that endogenous ligands, such as modified plasma lipoproteins, can trigger pattern recognition receptors (PRR) of innate immunity for cellular and humoral reactions. The underlying molecular pathways remain less explored. In this study, we investigated the mechanisms of inflammatory effects of oxidized low-density lipoproteins (oxLDL) on human primary coronary artery smooth muscle cells (VSMC). We show that already low concentration of oxLDL initiated atherogenic signals triggering VSMC transition to proinflammatory phenotype. oxLDL impaired the expression of contractile proteins and myocardin in VSMC and initiated changes in cell functional responses, including expression of proinflammatory molecules. The effects of oxLDL were abolished by downregulation of the multifunctional urokinase receptor (uPAR). In response to oxLDL uPAR associated with CD36 and TLR4, the two main PRR for both pathogen and endogenous ligands. We demonstrate that uPAR association with CD36 and TLR4 mediated oxLDL-induced and NF-κB-dependent G-CSF and GM-CSF expression and changes in VSMC contractile proteins. uPAR-mediated release of G-CSF and GM-CSF by VSMC affected macrophage behavior and production of MCP-1. We provide evidence for functional relevance of our in vitro findings to in vivo human atherosclerotic tissues. Our data imply uPAR as a part of a PRR cluster interfering structurally and functionally with CD36 and TLR4 and responding to endogenous atherogenic ligands. They further point to specific function of each component of this cluster in mediating the ultimate signaling pattern.


Cardiovascular Research | 2011

Urokinase receptor mediates mobilization, migration, and differentiation of mesenchymal stem cells

Krishna C. Vallabhaneni; Sergey Tkachuk; Yulia Kiyan; Nelli Shushakova; Hermann Haller; Inna Dumler; Gabriele Eden

AIMSnMultipotent mesenchymal stem cells (MSCs) have regenerative properties and are recognized as putative players in the pathogenesis of cardiovascular diseases. The underlying molecular mechanisms remain, however, sparsely explored. Our study was designed to elucidate a probable role for the multifunctional urokinase (uPA)/urokinase receptor (uPAR) system in MSC regulation. Though uPAR has been implicated in a broad spectrum of pathophysiological processes, nothing is known about uPAR in MSCs.nnnMETHODS AND RESULTSnuPAR was required to mobilize MSCs from the bone marrow (BM) of mice stimulated with granulocyte colony-stimulating factor (G-CSF) in vivo. An insignificant amount of MSCs was mobilized in uPAR(-/-) C57BL/6J mice, whereas in wild-type animals G-CSF induced an eight-fold increase of mobilized MSCs. uPAR(-/-) mice revealed up-regulated expression of G-CSF and stromal cell-derived factor 1 (CXCR4) receptors in BM. uPAR down-regulation leads to inhibition of human MSC migration, as shown in different migration assays. uPAR down- or up-regulation resulted in inhibition or stimulation of MSC differentiation into vascular smooth muscle cells (VSMCs) correspondingly, as monitored by changes in cell morphology and expression of specific marker proteins. Injection of fluorescently labelled MSCs in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice after femoral artery wire injury demonstrated impaired engraftment of uPAR-deficient MSCs at the place of injury.nnnCONCLUSIONSnThese data suggest a multifaceted function of uPAR in MSC biology contributing to vascular repair. uPAR might guide and control the trafficking of MSCs to the vascular wall in response to injury or ischaemia and their differentiation towards functional VSMCs at the site of arterial injury.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Urokinase Receptor Associates With Myocardin to Control Vascular Smooth Muscle Cells Phenotype in Vascular Disease

Yulia Kiyan; Anne Limbourg; Roman Kiyan; Sergey Tkachuk; Florian P. Limbourg; Aleksandr Ovsianikov; Boris N. Chichkov; Hermann Haller; Inna Dumler

Objective— The urokinase-type plasminogen activator (uPA) and its specific receptor (uPAR) are a potent multifunctional system involved in vascular remodeling. The goal of the study was to unravel the mechanisms of uPA/uPAR-directed vascular smooth muscle cell (VSMC) differentiation. Methods and Results— Using cultured human primary VSMCs, we identified a new molecular mechanism controlling phenotypic modulation in vitro and in vivo. We found that the urokinase-type plasminogen activator receptor (uPAR) acts together with the transcriptional coactivator myocardin to regulate the VSMC phenotype. uPAR, a glycosylphosphatidylinositol-anchored cell-surface receptor family member, undergoes ligand-induced internalization and nuclear transport in VSMCs. Platelet-derived growth factor receptor &bgr; and SUMOylated RanGAP1 mediate this trafficking. Nuclear uPAR associates with myocardin, which is then recruited from the promoters of serum response factor target genes and undergoes proteasomal degradation. This chain of events initiates the synthetic VSMC phenotype. Using mouse carotid artery ligation model, we show that this mechanism contributes to adverse vascular remodeling after injury in vivo. We then cultured cells on a microstructured biomaterial and found that substrate topography induced uPAR-mediated VSMC differentiation. Conclusion— These findings reveal the transcriptional activity of uPAR, controlling the differentiation of VSMCs in a vascular disease model. They also suggest a new role for uPAR as a therapeutic target and as a marker for VSMC phenotyping on prosthetic biomaterials.


Biological Chemistry | 2002

Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model.

Angelika Kusch; Sergey Tkachuk; Steffen Lutter; Hermann Haller; Rainer Dietz; Martin Lipp; Inna Dumler

Abstract Interactions of vascular smooth muscle cells (VSMC) with monocytes recruited to the arterial wall at a site of injury, with resultant modulation of VSMC growth and migration, are central to the development of vascular intimal thickening. Urokinasetype plasminogen activator (uPA) expressed by monocytes is a potent chemotactic factor for VSMC and might serve for the acceleration of vascular remodeling. In this report, we demonstrate that coculture of human VSMC with freshly isolated peripheral bloodderived human monocytes results in significant VSMC migration that increases during the coculture period. Accordingly, VSMC adhesion was inhibited with similar kinetics. VSMC proliferation, however, was not affected and remained at the same basal level during the whole period of coculture. The increase of VSMC migration in coculture was equivalent to the uPAinduced migration of monocultured VSMC and was blocked by addition into coculture of soluble uPAR (suPAR). Analysis of uPA and uPAR expression in cocultured cells demonstrated that monocytes are a major source of uPA, whose expression increases in coculture fivefold, whereas VSMC display an increased expression of cell surfaceassociated uPAR. These findings indicate that upregulated uPA production by monocytes following vascular injury acts most likely as an endogenous activator of VSMC migration contributing to the remodeling of vessel walls.


Journal of Bone and Mineral Research | 2015

Urokinase Receptor Mediates Osteoclastogenesis via M-CSF Release From Osteoblasts and the c-Fms/PI3K/Akt/NF-κB Pathway in Osteoclasts

Parnian Kalbasi Anaraki; Margret Patecki; Sergey Tkachuk; Yulia Kiyan; Hermann Haller; Inna Dumler

Bone remodeling is a dynamic process based on a fine‐tuned balance between formation and degradation of bone. Osteoblasts (OBLs) are responsible for bone formation and bone resorption is mediated by osteoclasts (OCLs). The mechanisms regulating the OBL‐OCL balance are critical in health and disease; however, they are still far from being understood. We reported recently that the multifunctional urokinase receptor (uPAR) mediates osteogenic differentiation of mesenchymal stem cells (MSCs) to OBLs and vascular calcification in atherosclerosis. Here, we address the question of whether uPAR may also be engaged in regulation of osteoclastogenesis. We show that uPAR mediates this process in a dual fashion. Thus, uPAR affected OBL‐OCL interplay. We observed that osteoclastogenesis was significantly impaired in co‐culture of monocyte‐derived OCLs and in OBLs derived from MSCs lacking uPAR. We show that expression and release, from OBLs, of macrophage colony‐stimulating factor (M‐CSF), which is indispensable for OCL differentiation, was inhibited by uPAR loss. We further found that uPAR, on the other hand, controlled formation, differentiation, and functional properties of macrophage‐derived OCLs. Expression of osteoclastogenic markers, such as tartrate‐resistant acid phosphatase (TRAP) and cathepsin K, was impaired in OCLs derived from uPAR‐deficient macrophages. The requirement of uPAR for osteoclastogenesis was further confirmed by immunocytochemistry and in bone resorption assay. We provide evidence that the underlying signaling mechanisms involve uPAR association with the M‐CSF binding receptor c‐Fms followed by c‐Fms phosphorylation and activation of the PI3K/Akt/NF‐κB pathway in OCLs. We further show that uPAR uses this pathway to regulate a balance between OCL differentiation, apoptosis, and cell proliferation. Our study identified uPAR as an important and multifaceted regulator of OBL‐OCL molecular interplay that may serve as an attractive target in bone disease and ectopic calcification.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Urokinase-Type Plasminogen Activator Downregulates Paraoxonase 1 Expression in Hepatocytes by Stimulating Peroxisome Proliferator–Activated Receptor-γ Nuclear Export

Jasmin Khateeb; Yulia Kiyan; Michael Aviram; Sergey Tkachuk; Inna Dumler; Bianca Fuhrman

Objective—The atherosclerotic lesion is characterized by lipid peroxide accumulation. Paraoxonase 1 (PON1) reduces atherosclerotic lesion oxidative stress, whereas urokinase-type plasminogen activator (uPA) increases oxidative stress in atherosclerotic lesions and contributes to the progression and complications of atherosclerosis. We hypothesized that uPA may promote oxidative stress in the arterial wall via modulation of PON1 activity. Because the liver is the main site for PON1 production, in the present study, we tested whether uPA influences PON1 expression in hepatocytes. Methods and Results—HuH7 hepatocytes were incubated in culture with increasing concentrations of uPA. uPA decreased PON1 gene expression and activity in a dose-dependent manner and accordingly suppressed PON1 secretion from hepatocytes. This effect required uPA/uPA receptor interaction. uPA downregulated PON1 gene expression via inactivation of peroxisome proliferator–activated receptor-&ggr; (PPAR&ggr;) activity, and this effect was dependent on uPA-mediated mitogen-activated protein kinase kinase activation. Mechanistic studies showed that uPA enhanced mitogen-activated protein kinase kinase–PPAR&ggr; interaction, resulting in PPAR&ggr; nuclear export to the cytosol. Conclusion—This study provides the first evidence that uPA interferes with PPAR&ggr; transcriptional activity in hepatocytes, resulting in downregulation of PON1 expression and its secretion to the medium. This may explain, at least in part, the prooxidative effect of uPA in the vascular wall.


PLOS ONE | 2009

Stat1 Nuclear Translocation by Nucleolin upon Monocyte Differentiation

Uwe Jerke; Sergey Tkachuk; Julia Kiyan; Victoria Stepanova; Angelika Kusch; Michael Hinz; Rainer Dietz; Hermann Haller; Bianca Fuhrman; Inna Dumler

Background Members of the signal transducer and activator of transcription (Stat) family of transcription factors traverse the nuclear membrane through a specialized structure, called the nuclear pore complex (NPC), which represents a selective filter for the import of proteins. Karyophilic molecules can bind directly to a subset of proteins of the NPC, collectively called nucleoporins. Alternatively, the transport is mediated via a carrier molecule belonging to the importin/karyopherin superfamily, which transmits the import into the nucleus through the NPC. Methodology/Principal Findings In this study, we provide evidence for an alternative Stat1 nuclear import mechanism, which is mediated by the shuttle protein nucleolin. We observed Stat1-nucleolin association, nuclear translocation and specific binding to the regulatory DNA element GAS. Using expression of nucleolin transgenes, we found that the nuclear localization signal (NLS) of nucleolin is responsible for Stat1 nuclear translocation. We show that this mechanism is utilized upon differentiation of myeloid cells and is specific for the differentiation step from monocytes to macrophages. Conclusions/Significance Our data add the nucleolin-Stat1 complex as a novel functional partner for the cell differentiation program, which is uniquely poised to regulate the transcription machinery via Stat1 and nuclear metabolism via nucleolin.


Biochemical Journal | 2008

Urokinase induces survival or pro-apoptotic signals in human mesangial cells depending on the apoptotic stimulus

Natalia Tkachuk; Julia Kiyan; Sergey Tkachuk; Roman Kiyan; Nelli Shushakova; Hermann Haller; Inna Dumler

Deregulated apoptosis of MCs (mesangial cells) is associated with a number of kidney diseases including end-stage diabetic nephropathy. Cell death by apoptosis is a tightly orchestrated event, whose mechanisms are not completely defined. In the present study we show that the uPA (urokinase-type plasminogen activator)/uPAR (uPA receptor) system can initiate both cell survival and pro-apoptotic signals in human MCs in response to different apoptotic stimuli. uPA abrogated MC apoptosis induced by serum withdrawal conditions and enhanced apoptosis initiated in MCs by high glucose. Effects of uPA were independent of its proteolytic activity and required uPAR for both pro- and anti-apoptotic effects. Studies on the uPAR interactome provide evidence that the opposing effects of uPA were directed via different uPAR-interacting transmembrane partners. Exposure of MCs to RGD (Arg-Gly-Asp) peptide led to abrogation of the anti-apoptotic effect of uPA, which implies involvement of integrins in this process. A pro-apoptotic effect of uPA under high-glucose conditions was mediated via association of uPAR and the cation-independent M6P (mannose-6-phosphate)/IGF2R (insulin-like growth factor 2 receptor). Both receptors were co-precipitated and co-localized in MCs. Studies on the underlying signalling indicate that the ERK1/2 (extracellular-signal-regulated kinase 1/2), Akt and BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) protein were involved in regulation of apoptosis by uPA in MCs. M6P/IGF2R mediated BAD perinuclear localization during apoptosis initiated by uPA and high glucose. In conclusion, we provide evidence that, in MCs, the uPA/uPAR system regulates survival/apoptosis processes in a stimulus-specific fashion via a mitochondria-dependent mechanism and that BAD protein serves as a downstream molecule.


Cardiovascular Research | 2009

The tight junction protein ZO-2 mediates proliferation of vascular smooth muscle cells via regulation of Stat1

Angelika Kusch; Sergey Tkachuk; Natalia Tkachuk; Margret Patecki; Joon-Keun Park; Rainer Dietz; Hermann Haller; Inna Dumler

AIMSnRecent evidence suggests that the zonula occludens protein 2 (ZO-2) might have additional cellular functions, beyond regulation of paracellular permeability of epithelial and endothelial cells. Deregulation of ZO-2 in response to ischaemia, hypertensive stress, and vascular injury implies its involvement in cardiovascular disorders, most likely via regulating the functional behaviour of vascular smooth muscle cells (VSMC). However, a role of ZO-2 in VSMC biology has yet to be established. Our study was designed to understand the specific functions of ZO-2 in human VSMC.nnnMETHODS AND RESULTSnThe expression of ZO-2 and Stat1 upon vascular injury was studied using ex vivo organ culture of coronary arteries combined with immunohistochemistry. ZO-2 silencing in human primary VSMC was achieved by means of lentiviral gene transfer. Cell proliferation was assessed by analysing DNA synthesis and by cell counting. Stat1 expression was examined using immunoblotting, immunocytochemistry, TaqMan, and fluorescence activated cell sorting (FACS) analysis. Functional relevance of Stat1 up-regulation was studied using a Stat1 promoter-luciferase reporter assay and intracellular microinjections of a Stat1 specific antibody. ZO-2 was highly expressed in the media and neointima of dilated but not of control arteries, whereas expression of the transcription factor Stat1 was inversely regulated upon injury. Analysis of VSMC with down-regulated ZO-2 revealed increased expression of Stat1 in these cells, whereas Stat1 phosphorylation was not affected. Stat1 up-regulation in VSMC with ZO-2 silencing resulted in a coordinate activation of Stat1-specific genes and consequently led to inhibition of cell proliferation. This effect was restored by microinjection of a Stat1 neutralising antibody.nnnCONCLUSIONnOur data suggest that the tight junction protein ZO-2 is involved in regulation of VSMC growth control upon vascular injury that is mediated by the transcription factor Stat1. Our findings point to a novel function of ZO-2 in VSMC and implicate ZO-2 as a novel important molecular target in pathological states of vascular remodelling in cardiovascular diseases.

Collaboration


Dive into the Sergey Tkachuk's collaboration.

Top Co-Authors

Avatar

Inna Dumler

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yulia Kiyan

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Kiyan

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Uwe Jerke

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge