Sergey V. Ivanov
Science Applications International Corporation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey V. Ivanov.
American Journal of Pathology | 2001
Sergey V. Ivanov; Shu-Yuan Liao; Alla V. Ivanova; Alla Danilkovitch-Miagkova; Nadezhda Tarasova; Gregor Weirich; Marsha J. Merrill; Martin A. Proescholdt; Edward H. Oldfield; Joshua Lee; Jan Zavada; Abdul Waheed; William S. Sly; Michael I. Lerman; Eric J. Stanbridge
An acidic extracellular pH is a fundamental property of the malignant phenotype. In von Hippel-Lindau (VHL)-defective tumors the cell surface transmembrane carbonic anhydrase (CA) CA9 and CA12 genes are overexpressed because of the absence of pVHL. We hypothesized that these enzymes might be involved in maintaining the extracellular acidic pH in tumors, thereby providing a conducive environment for tumor growth and spread. Using Northern blot analysis and immunostaining with specific antibodies we analyzed the expression of CA9 and CA12 genes and their products in a large sample of cancer cell lines, fresh and archival tumor specimens, and normal human tissues. Expression was also analyzed in cultured cells under hypoxic conditions. Expression of CA IX and CA XII in normal adult tissues was detected only in highly specialized cells and for most tissues their expression did not overlap. Analysis of RNA samples isolated from 87 cancer cell lines and 18 tumors revealed high-to-moderate levels of expression of CA9 and CA12 in multiple cancers. Immunohistochemistry revealed high-to-moderate expression of these enzymes in various normal tissues and multiple common epithelial tumor types. The immunostaining was seen predominantly on the cell surface membrane. The expression of both genes was markedly induced under hypoxic conditions in tumors and cultured tumor cells. We conclude that the cell surface trans-membrane carbonic anhydrases CA IX and CA XII are overexpressed in many tumors suggesting that this is a common feature of cancer cells that may be required for tumor progression. These enzymes may contribute to the tumor microenvironment by maintaining extracellular acidic pH and helping cancer cells grow and metastasize. Our studies show an important causal link between hypoxia, extracellular acidification, and induction or enhanced expression of these enzymes in human tumors.
Nature Genetics | 1998
Alla V. Ivanova; Michael J. Bonaduce; Sergey V. Ivanov; Amar J. S. Klar
Heritable inactivation of specific regions of the genome is a widespread, possibly universal phenomenon for gene regulation in eukaryotes. Self-perpetuating, clonally inherited chromatin structure has been proposed as the explanation for such phenomena as position-effect variegation (PEV) and control of segment determination and differentiation in flies, X-chromosome inactivation and parental imprinting in mammals, gene silencing by paramutation in maize and silencing of the mating-type loci in yeasts. We have now found that the clr4 gene, which is essential for silencing of centromeres and the mating-type loci in Schizosaccharomyces pombe, encodes a protein with high homology to the product of Su(var)3-9, a gene affecting PEV in Drosophila. Like Su(var)3-9p, Clr4p contains SET and chromo domains, motifs found in proteins that modulate chromatin structure. Site-directed mutations in the conserved residues of the chromo domain confirm that it is required for proper silencing and directional switching of the mating type, like SET domain. Surprisingly, RNA differential display experiments demonstrated that clr4+ can mediate transcriptional activation of certain other loci. These results show that clr4 plays a critical role in silencing at mating-type loci and centromeres through the organization of repressive chromatin structure and demonstrate a new, activator function for Clr4p.
Cancer Research | 2010
Harvey I. Pass; Chandra Goparaju; Sergey V. Ivanov; Jessica S. Donington; Michele Carbone; Moshe Hoshen; Dalia Cohen; Ayelet Chajut; Shai Rosenwald; Harel Dan; Sima Benjamin; Ranit Aharonov
The inability to forecast outcomes for malignant mesothelioma prevents clinicians from providing aggressive multimodality therapy to the most appropriate individuals who may benefit from such an approach. We investigated whether specific microRNAs (miR) could segregate a largely surgically treated group of mesotheliomas into good or bad prognosis categories. A training set of 44 and a test set of 98 mesothelioma tumors were analyzed by a custom miR platform, along with 9 mesothelioma cell lines and 3 normal mesothelial lines. Functional implications as well as downstream targets of potential prognostic miRs were investigated. In both the training and test sets, hsa-miR-29c* was an independent prognostic factor for time to progression as well as survival after surgical cytoreduction. The miR was expressed at higher levels in epithelial mesothelioma, and the level of this miR could segregate patients with this histology into groups with differing prognosis. Increased expression of hsa-miR-29c* predicted a more favorable prognosis, and overexpression of the miR in mesothelioma cell lines resulted in significantly decreased proliferation, migration, invasion, and colony formation. Moreover, major epigenetic regulation of mesothelioma is mediated by hsa-miR-29c* and was shown through downregulation of DNA methyltransferases as well as upregulation of demethylating genes. A single miR has the potential to be a prognostic biomarker in mesothelioma, and validation of these findings as well as investigation of its downstream targets may give insight for potential therapies in the future.
Journal of Biological Chemistry | 2010
Sergey V. Ivanov; Chandra Goparaju; Peter Lopez; Jiri Zavadil; Ginat Toren-Haritan; Shai Rosenwald; Moshe Hoshen; Ayelet Chajut; Dalia Cohen; Harvey I. Pass
The human genome encodes several hundred microRNA (miRNA) genes that produce small (21–23n) single strand regulatory RNA molecules. Although abnormal expression of miRNAs has been linked to cancer progression, the mechanisms of this dysregulation are poorly understood. Malignant mesothelioma (MM) of pleura is an aggressive and highly lethal cancer resistant to conventional therapies. We and others previously linked loss of the 9p21.3 chromosome in MM with short time to tumor recurrence. In this study, we report that MM cell lines derived from patients with more aggressive disease fail to express miR-31, a microRNA recently linked with suppression of breast cancer metastases. We further demonstrate that this loss is due to homozygous deletion of the miR-31-encoding gene that resides in 9p21.3. Functional assessment of miR-31 activity revealed its ability to inhibit proliferation, migration, invasion, and clonogenicity of MM cells. Re-introduction of miR-31 suppressed the cell cycle and inhibited expression of multiple factors involved in cooperative maintenance of DNA replication and cell cycle progression, including pro-survival phosphatase PPP6C, which was previously associated with chemotherapy and radiation therapy resistance, and maintenance of chromosomal stability. PPP6C, whose mRNA is distinguished with three miR-31-binding sites in its 3′-untranslated region, was consistently down-regulated by miR-31 introduction and up-regulated in clinical MM specimens as compared with matched normal tissues. Taken together, our data suggest that tumor-suppressive propensity of miR-31 can be used for development of new therapies against mesothelioma and other cancers that show loss of the 9p21.3 chromosome.
American Journal of Pathology | 2004
Sergey V. Ivanov; Jerrold M. Ward; Lino Tessarollo; Dorothea McAreavey; Vandana Sachdev; Lameh Fananapazir; Melissa K. Banks; Nicole Morris; Draginja Djurickovic; Deborah E. Devor-Henneman; Ming Hui Wei; Gregory W. Alvord; Boning Gao; James A. Richardson; John D. Minna; Michael A. Rogawski; Michael I. Lerman
CACNA2D2 is a putative tumor suppressor gene located in the human chromosome 3p21.3 region that shows frequent allelic imbalances in lung, breast, and other cancers. The alpha2delta-2 protein encoded by the gene is a regulatory subunit of voltage-dependent calcium channels and is expressed in brain, heart, and other tissues. Here we report that mice homozygous for targeted disruption of the Cacna2d2 gene exhibit growth retardation, reduced life span, ataxic gait with apoptosis of cerebellar granule cells followed by Purkinje cell depletion, enhanced susceptibility to seizures, and cardiac abnormalities. The Cacna2d2(tm1NCIF) null phenotype has much in common with that of Cacna1a mutants, such as cerebellar neuro-degeneration associated with ataxia, seizures, and premature death. A tendency to bradycardia and limited response of null mutants to isoflurane implicate alpha2delta-2 in sympathetic regulation of cardiac function. In summary, our findings provide genetic evidence that the alpha2delta-2 subunit serves in vivo as a component of P/Q-type calcium channels, is indispensable for the central nervous system function, and may be involved in hereditary cerebellar ataxias and epileptic disorders in humans.
Human Genetics | 1998
Ming Hui Wei; Irina Karavanova; Sergey V. Ivanov; Nicolae C. Popescu; Catherine L. Keck; Svetlana Pack; Jonathan A. Eisen; Michael I. Lerman
To discover genes contributing to mental retardation in 3p- syndrome patients we have used in silico searches for neural genes in NCBI databases (dbEST and UniGene). An EST with strong homology to the rat CAM L1 gene subsequently mapped to 3p26 was used to isolate a full-length cDNA. Molecular analysis of this cDNA, referred to as CALL (cell adhesion L1-like), showed that it is encoded by a chromosome 3p26 locus and is a novel member of the L1 gene family of neural cell adhesion molecules. Multiple lines of evidence suggest CALL is likely the human ortholog of the murine gene CHL1: it is 84% identical on the protein level, has the same domain structure, same membrane topology, and a similar expression pattern. The orthology of CALL and CHL1 was confirmed by phylogenetic analysis. By in situ hybridization, CALL is shown to be expressed regionally in a timely fashion in the central nervous system, spinal cord, and peripheral nervous system during rat development. Northern analysis and EST representation reveal that it is expressed in the brain and also outside the nervous system in some adult human tissues and tumor cell lines. The cytoplasmic domain of CALL is conserved among other members of the L1 subfamily and features sequence motifs that may involve CALL in signal transduction pathways.
Neuro-oncology | 2005
Martin A. Proescholdt; Christina Mayer; Marion Kubitza; Thomas Schubert; Shu-Yuan Liao; Eric J. Stanbridge; Sergey V. Ivanov; Edward H. Oldfield; Alexander Brawanski; Marsha J. Merrill
Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel-Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1alpha staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target.
Genes, Chromosomes and Cancer | 2000
Debora Angeloni; Alla Danilkovitch-Miagkova; Sergey V. Ivanov; Richard Breathnach; Bruce E. Johnson; Edward J. Leonard; Michael I. Lerman
The human RON gene (MST1R) maps to 3p21.3, a region frequently altered in lung cancer and other malignancies. It encodes a receptor tyrosine kinase (RTK) closely related to MET, whose mutations are associated with neoplasia. We investigated whether RON might be involved in the development or progression of lung cancer. We first determined the exon‐intron structure of the gene by direct sequencing of RON cosmid DNA and PCR products containing intronic sequences, and then developed primers suitable for mutation analysis by the single‐strand conformation polymorphism (SSCP) method. Twenty coding exons were characterized, all but the first one small (average size: 170 bp), a feature shared with other RTK genes. We performed SSCP analysis of RON in small and non‐small cell lung cancer samples, upon detection of its expression in a sample of lung cancer cell lines. A mutation (T915C: L296P) was found in an adenocarcinoma specimen. Several single nucleotide polymorphisms were also found. The panel of intron‐anchored primers developed in this work will be useful for mutation analysis of the RON gene in different types of human tumors.
Clinical Cancer Research | 2012
Evgenia Gubanova; Brandee T. Brown; Sergey V. Ivanov; Thomas Helleday; Gordon B. Mills; Wendell G. Yarbrough; Natalia Issaeva
Purpose: Human papillomavirus (HPV) is linked with a subset of head and neck squamous cell carcinomas (HNSCC). HPV-positive HNSCCs show a better prognosis than HPV-negative HNSCCs, which may be explained by sensitivity of the HPV-positive HNSCCs to ionizing radiation (IR). Although the molecular mechanism behind sensitivity to IR in HPV-positive HNSCCs is unresolved, DNA damage response (DDR) might be a significant determinant of IR sensitivity. An important player in the DDR, SMG-1 (suppressor with morphogenetic effect on genitalia), is a potential tumor suppressor and may therefore be deregulated in cancer. No studies have yet been conducted linking defects in SMG-1 expression with cancer. We investigated whether deregulation of SMG-1 could be responsible for defects in the DDR in oropharyngeal HNSCC. Experimental Design: Expression and promoter methylation status of SMG-1 were investigated in HNSCCs. To identify a functional link between HPV infection and SMG-1, we transfected the HPV-negative cells with an E6/E7 expression construct. SMG-1 short hairpin RNAs were expressed in HPV-negative cells to estimate survival upon IR. Results: Forced E6/E7 expression in HPV-negative cells resulted in SMG-1 promoter hypermethylation and decreased SMG-1 expression. Due to promoter hypermethylation, HPV-positive HNSCC cells and tumors express SMG-1 at lower levels than HPV-negative SCCs. Depletion of SMG-1 in HPV-negative HNSCC cells resulted in increased radiation sensitivity, whereas SMG-1 overexpression protected HPV-positive tumor cells from irradiation. Conclusions: Levels of SMG-1 expression negatively correlated with HPV status in cancer cell lines and tumors. Diminished SMG-1 expression may contribute to the enhanced response to therapy exhibited by HPV-positive HNSCCs. Clin Cancer Res; 18(5); 1257–67. ©2012 AACR.
Biochemical and Biophysical Research Communications | 2008
Sergey V. Ivanov; Alla V. Ivanova; Konstantin Salnikow; Olga Timofeeva; Malayannan Subramaniam; Michael I. Lerman
Mutations in the VHL gene are associated with highly vascular tumors of kidney, brain, retina, and adrenal gland. The inability of the mutant VHL protein to destabilize HIF-1 plays a crucial role in malignant angiogenesis. VHL is also associated with ECM assembly but the molecular mechanisms of this activity remain unclear. We used expression arrays and cell lines with different VHL status to identify ECM-associated genes controlled by VHL. One of them, adhesion-associated TGFBI, was repressed by VHL and overexpressed in renal, gastrointestinal, brain, and other tumors. Analyzing the mechanism of TGFBI up-regulation in clear cell carcinoma, we identified a novel VHL target, a Kruppel-like transcriptional factor 10 (KLF10). The TGFBI promoter, which we isolated and studied in Luc-reporter assay, was induced by KLF10 but not hypoxia. These data provide the molecular basis for the observed VHL effect on TGFBI and stimulate further research into the KLF10 and TGFBI roles in cancer.