Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey V. Lindeman is active.

Publication


Featured researches published by Sergey V. Lindeman.


Journal of Organic Chemistry | 2008

Chiral ionic liquids: synthesis, properties, and enantiomeric recognition.

Shaofang Yu; Sergey V. Lindeman; Chieu D. Tran

We have synthesized a series of structurally novel chiral ionic liquids which have a either chiral cation, chiral anion, or both. Cations are an imidazolium group, while anions are based on a borate ion with spiral structure and chiral substituents. Both (or all) stereoisomeric forms of each compound in the series can be readily synthesized in optically pure form by a simple one-step process from commercially available reagents. In addition to the ease of preparation, most of the chiral ILs in this series are liquid at room temperature with a solid to liquid transformation temperature as low as -70 degrees C and have relatively high thermal stability (up to at least 300 degrees C). Circular dichroism and X-ray crystallographic results confirm that the reaction to form the chiral spiral borate anion is stereospecific, namely, only one of two possible spiral stereoisomers was formed. Results of NMR studies including 1H{15N} heteronuclear single quantum coherence (HSQC) show that these chiral ILs exhibit intramolecular as well as intermolecular enantiomeric recognition. Intramolecularly, the chiral anion of an IL was found to exhibit chiral recognition toward the cation. Specifically, for a chiral IL composing with a chiral anion and a racemic cation, enantiomeric recognition of the chiral anion toward both enantiomers of the cation lead to pronounced differences in the NMR bands of the cation enantiomers. The chiral recognition was found to be dependent on solvent dielectric constant, concentration, and structure of the ILs. Stronger enantiomeric recognition was found in solvent with relatively lower dielectric constants (CDCl3 compared to CD3CN) and at higher concentration of ILs. Also, stronger chiral recognition was found for anions with a relatively larger substituent group (e.g., chiral anion with a phenylmethyl group exhibits stronger chiral recognition compared to that with a phenyl group, and an anion with an isobutyl group has the weakest chiral recognition). Chiral anions were also found to exhibit intermolecular chiral recognition. Enantiomeric discrimination was found for a chiral IL composed of a chiral anion and achiral cation toward another chiral molecule such as a quinine derivative.


Langmuir | 2012

Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

Tushar S. Navale; Khushabu Thakur; Vijay S. Vyas; Shriya H. Wadumethrige; Ruchi Shukla; Sergey V. Lindeman; Rajendra Rathore

The spontaneous assembly of aromatic cation radicals (D(+•)) with their neutral counterpart (D) affords dimer cation radicals (D(2)(+•)). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography.


Dalton Transactions | 2010

Chemical switching behaviour of tricarbonylrhenium(I) complexes of a new redox active 'pincer' ligand.

Sarath Wanniarachchi; Brendan J. Liddle; John Toussaint; Sergey V. Lindeman; Brian Bennett; James R. Gardinier

The structures and optoelectronic properties of tricarbonylrhenium(I) complexes of di(2-pyrazolyl-p-tolyl)amine in its neutral and deprotonated (uninegative amido) form were investigated. Reactions of the complexes with Brønsted acids or bases result in distinctive changes of colour and electrochemical activity owing to the non-innocent nature of the ligand.


Chemical Communications | 2009

Octamethoxydibenzochrysene: isolation and X-ray crystallographic characterization of a twisted polyaromatic cation radical

Tushar S. Navale; Linyi Zhai; Sergey V. Lindeman; Rajendra Rathore

The isolation and X-ray crystal structure determination of octamethoxydibenzochrysene () cation radical together with DFT calculations allow us to delineate evidence that the complex structural changes (i.e. elongation and shortening of various bonds) in a polyaromatic hydrocarbon can be predicted based on the positioning of the largest bonding and antibonding character of the HOMO.


Chemical Communications | 2008

Isolation and X-ray structural characterization of tetraisopropylpyrene cation radical

Moloy Banerjee; Vijay S. Vyas; Sergey V. Lindeman; Rajendra Rathore

A practical synthesis of 1,3,6,8-tetraisopropylpyrene and the isolation and X-ray structural characterization of its monomeric cation radical salt are described.


Chemistry: A European Journal | 2013

Synthetic, spectroscopic, and DFT studies of iron complexes with iminobenzo(semi)quinone ligands: implications for o-aminophenol dioxygenases.

Michael M. Bittner; David Kraus; Sergey V. Lindeman; Codrina V. Popescu; Adam T. Fiedler

The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe((Ph2)Tp)((tBu)ISQ)] (2a; where (Ph2)Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and (tBu)ISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2a and its one-electron oxidized derivative [3a](+). In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP). The isomer shifts of about 0.97 mm s(-1) obtained through Mössbauer experiments confirm that 2a (and its (Ph2)TIP-based analogue [2b](+)) contain Fe(II) centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the Fe(II)-ISQ complexes yields complexes ([3a](+) and [3b](2+)) with electronic configurations between the Fe(III)-ISQ and Fe(II)-IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed.


Chemical Communications | 2013

Preparation of a semiquinonate-bridged diiron(II) complex and elucidation of its geometric and electronic structures

Amanda E. Baum; Sergey V. Lindeman; Adam T. Fiedler

The synthesis and crystal structure of a diiron(II) complex containing a bridging semiquinonate radical are presented. The unique electronic structure of this S = 7/2 complex is examined with spectroscopic (absorption, EPR, resonance Raman) and computational methods.


Dalton Transactions | 2011

Using sterics to promote reactivity in fac-Re(CO)3 complexes of some ‘non-innocent’ NNN-pincer ligands

Sarath Wanniarachchi; Brendan J. Liddle; John Toussaint; Sergey V. Lindeman; Brian Bennett; James R. Gardinier

Two new redox active ligands based on di(2-(3-organopyrazolyl)-p-tolyl)amine have been prepared in order to investigate potential effects of steric bulk on the structures, electronic properties, or reactivity of tricarbonylrhenium(I) complexes. Replacing the hydrogens at the 3-pyrazolyl positions with alkyl groups causes significant distortion to the ligand framework due to potential interactions between these groups when bound to a fac-Re(CO)(3) moiety. The distortions effectively increase the nucleophilic character of the central amino nitrogen and ligand-centered reactivity of the metal complexes.


Inorganic Chemistry | 2008

First-Row Transition-Metal Complexes of a New Pentadentate Ligand, α,α,α′,α′-Tetra(pyrazolyl)lutidine

Tyler James Morin; Brian Bennett; Sergey V. Lindeman; James R. Gardinier

A new pentadentate ligand, alpha,alpha,alpha,alpha-tetra(pyrazolyl)lutidine, pz 4lut, has been prepared by a CoCl 2-catalyzed rearrangement reaction between 2,6-pyridinedicarboxaldehyde and dipyrazolylthione. The coordination chemistry with some divalent first-row transition metal (Mn, Fe, Co, Ni, Cu, and Zn) chlorides has been explored. The electronic properties indicate that the new kappa (5)N ligand is a slightly stronger-field donor to Ni (2+) and Co (2+) than a related pentadentate ligand with five pyridyl donors presumably because of greater interaction between the metal and axial pyridyl.


Inorganic Chemistry | 2014

Assembly, Structure, and Reactivity of Cu4S and Cu3S Models for the Nitrous Oxide Reductase Active Site, CuZ*

Brittany J. Johnson; Sergey V. Lindeman; Neal P. Mankad

Bridging diphosphine ligands were used to facilitate the assembly of copper clusters with single sulfur atom bridges that model the structure of the Cu(Z)* active site of nitrous oxide reductase. Using bis(diphenylphosphino)amine (dppa), a [Cu(I)4(μ4-S)] cluster with N-H hydrogen bond donors in the secondary coordination sphere was assembled. Solvent and anion guests were found docking to the N-H sites in the solid state and in the solution phase, highlighting a kinetically viable pathway for substrate introduction to the inorganic core. Using bis(dicyclohexylphosphino)methane (dcpm), a [Cu(I)3(μ3-S)] cluster was assembled preferentially. Both complexes exhibited reversible oxidation events in their cyclic voltammograms, making them functionally relevant to the Cu(Z)* active site that is capable of catalyzing a multielectron redox transformation, unlike the previously known [Cu(I)4(μ4-S)] complex from Yam and co-workers supported by bis(diphenylphosphino)methane (dppm). The dppa-supported [Cu(I)4(μ4-S)] cluster reacted with N3(-), a linear triatomic substrate isoelectronic to N2O, in preference to NO2(-), a bent triatomic. This [Cu(I)4(μ4-S)] cluster also bound I(-), a known inhibitor of Cu(Z)*. Consistent with previous observations for nitrous oxide reductase, the tetracopper model complex bound the I(-) inhibitor much more strongly and rapidly than the substrate isoelectronic to N2O, producing unreactive μ3-iodide clusters including a [Cu3(μ3-S)(μ3-I)] complex related to the [Cu4(μ4-S)(μ2-I)] form of the inhibited enzyme.

Collaboration


Dive into the Sergey V. Lindeman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis W. Bennett

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Tasneem A. Siddiquee

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shishir Ghosh

Jahangirnagar University

View shared research outputs
Researchain Logo
Decentralizing Knowledge