Sergey V. Lishchuk
Sheffield Hallam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey V. Lishchuk.
Journal of Chemical Physics | 2004
Ivan V. Blazhnov; Nikolay P. Malomuzh; Sergey V. Lishchuk
The relationship of the microstructure of supercooled, highly viscous glycerol to the temperature dependence of its density, thermal expansion coefficient, and shear viscosity are discussed. The character of this temperature dependence at the transition from low viscosity state to the solid amorphous state (solidified state without nuclei) is described with help of function psi, which can be interpreted as the effective number of degrees of freedom responsible for the change of viscosity of glycerol over a broad range; these degrees of freedom are those related to the alpha-relaxation process. It is shown that the change in effective activation energy of the viscosity is completely determined by the parameter psi. The change in the shear viscosity of glycerol due to the influence of the solid-phase nuclei is considered. It is shown that the introduction of the parameter phi, equal to the specific volume occupied by the nuclei of the solid phase, together with psi provides a natural explanation of the temperature dependence of density and thermal expansion coefficients of glycerol in its liquid, solid amorphous, glassy, and crystal states. The peculiarities of the temperature dependence of phi(T) and psi(T) for glycerol and o-terphenyl are compared.
Physical Review E | 2003
C. M. Care; Ian Halliday; K Good; Sergey V. Lishchuk
A lattice Boltzmann (LB) scheme is described, which recovers the equations developed by Qian-Sheng for the hydrodynamics of a nematic liquid crystal with a tensor order parameter. The standard mesoscopic LB scalar density is generalized to a tensor quantity and the macroscopic momentum, density, and tensor order parameter are recovered from appropriate moments of this mesoscopic density. A single lattice Boltzmann equation is used with a direction dependent Bhatnagar, Gross, and Krook (BGK) collision term, with additional forcing terms to recover the antisymmetric terms in the stress tensor. A Chapman-Enskog analysis is presented, which demonstrates that the Qian-Sheng scheme is recovered, provided a lattice with sixth-order isotropy is used. The method is validated against analytical results for a number of cases including flow alignment of the order tensor and the Miesowicz viscosities in the presence of an aligning magnetic field. The algorithm accurately recovers the predicted changes in the order parameter in the presence of aligning flow, and magnetic, fields. Preliminary results are given for an extension of the method to model the interface between isotropic and nematic fluids.
Molecular Physics | 2002
Sergey V. Lishchuk
The Lekner method for calculation of electrostatic interactions in periodically replicated simulation cells is extended to quasi-two-dimensional systems of particles with dipolar interactions. The electric field, potential energy, forces and torques are expressed through rapidly converging series of modified Bessel functions. The method contains no arbitrary parameters, and has no limitations on the simulation box width.
Medical Engineering & Physics | 2011
Ian Halliday; Mark Atherton; C. M. Care; Michael W. Collins; David Jw Evans; Paul C. Evans; D. R. Hose; Ashraf W. Khir; Carola S. König; Rob Krams; Patricia V. Lawford; Sergey V. Lishchuk; Giuseppe Pontrelli; Victoria Ridger; Timothy Spencer; Yiannis Ventikos; Dawn Walker; Paul N. Watton
We discuss, from the perspective of basic science, the physical and biological processes which underlie atherosclerotic (plaque) initiation at the vascular endothelium, identifying the widely separated spatial and temporal scales which participate. We draw on current, related models of vessel wall evolution, paying particular attention to the role of particulate flow (blood is not a continuum fluid), and proceed to propose, then validate all the key components in a multiply-coupled, multi-scale modeling strategy (in qualitative terms only, note). Eventually, this strategy should lead to a quantitative, patient-specific understanding of the coupling between particulate flow and the endothelial state.
Journal of Chemical Physics | 2012
Sergey V. Lishchuk
With the aim of locating the origin of discrepancy between experimental and computer simulation results on bulk viscosity of liquid argon, a molecular dynamic simulation of argon interacting via ab initio pair potential and triple-dipole three-body potential has been undertaken. Bulk viscosity, obtained using Green-Kubo formula, is different from the values obtained from modeling argon using Lennard-Jones potential, the former being closer to the experimental data. The conclusion is made that many-body inter-atomic interaction plays a significant role in formation of bulk viscosity.
Physical Review E | 2007
Sergey V. Lishchuk
A theoretical study is presented of surface waves at a monomolecular surfactant film between an isotropic liquid and a nematic liquid crystal for the case when the surfactant film is in the isotropic two-dimensional fluid phase and induces homeotropic (normal to the interface) orientation of the nematic director. The dispersion relation for the surface waves is obtained, and different surface modes are analyzed with account being taken of the anchoring induced by the surfactant layer, the curvature energy of the interface, and the anisotropy of the viscoelastic coefficients. The dispersion laws for capillary and dilatational surface modes retain structure similar to that in isotropic systems, but involve anisotropic viscosity coefficients. Additional modes are related to relaxation of the nematic director field due to anchoring at the interface. The results can be used to determine different properties of nematic-surfactant-isotropic interfaces from experimental data on surface light scattering.
Journal of Chemical Physics | 2005
Sergey V. Lishchuk; Tatjana V. Lokotosh; Nikolay P. Malomuzh
A microscopic Hamiltonian of the hydrogen-bond network in two-dimensional lattice water is proposed, which describes the formation and disruption of the H bonds, their bending, and which satisfies the Bernal-Fowler rules [J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933)]. The thermodynamic properties of the H-bond network are studied using the method of many-particle irreducible distribution functions, which is a generalization of the Kikuchi cluster approach [R. Kikuchi, Phys. Rev. 81, 988 (1951)] and the Bethe-Peierls quasiactivities method [H. A. Bethe, Prog. R. Soc. A 150, 552 (1935)]. The temperature dependencies of the average number of H bonds per molecules, the contribution of the H bonds into the heat capacity of the system, and the parameters describing the correlations between the states of molecules on the neighboring sites are investigated. It is shown that depending on the magnitude of the interaction between the H bonds in the H-bond subsystem either smooth or sharp first-order phase transition can occur. The role of different factors in the formation of the properties of the H-bond network is discussed.
Journal of Physics: Condensed Matter | 2004
Sergey V. Lishchuk; C. M. Care; Ian Halliday
A lattice Boltzmann (LB) model of an interface between a nematic and an isotropic fluid is presented. The method is used to study, in two dimensions, the properties of a deformable colloidal droplet of an isotropic fluid suspended in a nematic matrix. The isotropic fluid is modelled by a standard lattice Bhatnagar–Gross–Krook (LBGK) scheme. The LB model of the nematic is a modified LBGK scheme in which a tensor density is used to recover the variable order parameter nemato-dynamics scheme proposed by Qian and Sheng. The interface between the two fluids is modelled by introducing appropriate forcing at the interface. The stress balance is achieved using an extension of a method proposed by Lishchuk et al, and the torque balance is achieved with an appropriate surface molecular field. The resulting interface algorithm recovers the macroscopic equations developed by Rey. Results are presented for the dependence of the shape of the droplet and the nematic defects upon the surface tension and the anchoring strength. A discussion is also presented of the effect of curvature rigidity on the droplet shape.
International Journal of Thermal Sciences | 2001
Sergey V. Lishchuk; Johann Fischer
In order to understand the transport of water in pores under the influence of a microwave electric field the velocity distribution function of the water molecules is thought to be a key quantity. First, bulk water under the influence of an alternating electric field is studied by using a kinetic equation. As rotation occurs on a faster time scale and translation on a slower time scale it is argued that the velocity distribution for the bulk water is a Maxwell-Boltzmann distribution. Next, the non-equilibrium molecular dynamics simulation method is applied to study the behaviour of TIP3P water molecules under microwave electric field in a slit pore with thermostated walls. The water heats up till it reaches a steady state temperature. It is found that in the transient process as well as in the steady state the velocity distribution function is a Maxwell-Boltzmann distribution for the corresponding temperature. Hence, there is no convective mass transport due to a direct influence of the electric field.
Physical Review E | 2016
Ian Halliday; Sergey V. Lishchuk; Timothy Spencer; Giuseppe Pontrelli; Paul C. Evans
We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013)10.1140/epjst/e2013-01834-y] and underscore the importance of a correct vesicle membrane condition.