Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Yu. Kleymenov is active.

Publication


Featured researches published by Sergey Yu. Kleymenov.


Biophysical Chemistry | 2009

Effect of proline on thermal inactivation, denaturation and aggregation of glycogen phosphorylase b from rabbit skeletal muscle

Tatyana B. Eronina; Natalia A. Chebotareva; Svetlana G. Bazhina; Valentina F. Makeeva; Sergey Yu. Kleymenov; Boris I. Kurganov

It has been shown that the relatively low concentrations of proline (0.1 M) have a slight accelerating effect on thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscle registered by the accumulaton of the aggregated protein. The suppression of Phb aggregation at high proline concentrations is mainly due to the protective action of proline on the stage of unfolding of the Phb molecule. The enhancement of Phb stability in the presence of the high concentrations of proline was demonstrated by the data on differential scanning calorimetry, analytical ultracentrifugation and thermoinactivation kinetics. The construction of the protein aggregate size versus time plots allowed the acceleration of the stage of Phb aggregation in the presence of high concentrations of proline to be demonstrated. The obtained results are consistent with the predictions of the crowding theory.


Biochemistry | 2011

Does the Crowded Cell-like Environment Reduce the Chaperone-like Activity of α-Crystallin?

Svetlana G. Roman; Natalia A. Chebotareva; Tatyana B. Eronina; Sergey Yu. Kleymenov; Valentina F. Makeeva; Nikolay B. Poliansky; Konstantin O. Muranov; Boris I. Kurganov

The effect of crowding on the chaperone-like activity of α-crystallin has been studied using aggregation of UV-irradiated glycogen phosphorylase b (Phb) from rabbit skeletal muscle as an aggregation test system. The merit of this test system is the possibility of testing agents that directly affect the stage of aggregation of the protein molecules. It was shown that the solution of Phb denatured by UV contained aggregates with a hydrodynamic radius of 10.4 nm. These aggregates are relatively stable at 20 °C; however, they reveal a tendency to stick further in the presence of crowding agents. The study of the effect of α-crystallin on the aggregation of UV-irradiated Phb in the presence of the crowding agents by dynamic light scattering at 37 °C showed that under crowding conditions the antiaggregation ability of α-crystallin was weakened. On the basis of the analytical ultracentrifugation, size-exclusion chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the scheme of interaction of UV-irradiated Phb and α-crystallin has been proposed. It is assumed that chaperone-target protein complexes of two types are formed, namely, the complexes of dissociated forms of α-crystallin with a protein substrate and high-mass α-crystallin-denatured protein complexes. The complexes of the first type reveal a weak propensity to aggregate even under crowding conditions. The complexes of the second type are characterized by the lower rate of aggregation in comparison with that of original UV-irradiated Phb. However, crowding stimulates the rate of aggregation of these complexes, resulting in the above-mentioned decrease in the chaperone-like activity of α-crystallin.


PLOS ONE | 2016

Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin

Vera A. Borzova; Kira A. Markossian; Natalia A. Chebotareva; Sergey Yu. Kleymenov; Nikolay B. Poliansky; Konstantin O. Muranov; Vita Stein-Margolina; Vladimir V. Shubin; Denis I. Markov; Boris I. Kurganov

Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates.


Biophysical Chemistry | 2012

Kinetics of aggregation of UV-irradiated glyceraldehyde-3-phosphate dehydrogenase from rabbit skeletal muscle. Effect of agents possessing chaperone-like activity

Olga I. Maloletkina; Kira A. Markossian; Natalia A. Chebotareva; R.A. Asryants; Sergey Yu. Kleymenov; Nikolay B. Poliansky; Konstantin O. Muranov; Valentina F. Makeeva; Boris I. Kurganov

An aggregation test system based on the aggregation of UV-irradiated glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rabbit skeletal muscle has been proposed. On the basis of the measurements of the enzyme activity and differential scanning calorimetry data a conclusion has been made that UV radiation results in formation of damaged protein molecules with lower thermostability. It was shown that the order of aggregation rate for UV-irradiated GAPDH with respect to the protein was close to 2. This means that such a test system allows detecting the effect of various agents exclusively on the stage of aggregation of unfolded protein molecules. The influence of α-crystallin and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on aggregation of UV-irradiated GAPDH was studied. Despite the fact that HP-β-CD accelerates thermal aggregation of non-irradiated GAPDH, in the case of aggregation of UV-irradiated GAPDH HP-β-CD reveals a purely protective effect.


Biopolymers | 2014

Thermal denaturation and aggregation of apoform of glycogen phosphorylase b. Effect of crowding agents and chaperones

Tatyana B. Eronina; Natalia A. Chebotareva; Svetlana G. Roman; Sergey Yu. Kleymenov; Valentina F. Makeeva; Nikolay B. Poliansky; Konstantin O. Muranov; Boris I. Kurganov

The effect of protein and chemical chaperones and crowders on thermal stability and aggregation of apoform of rabbit muscle glycogen phosphorylase b (apoPhb) has been studied at 37°C. Proline suppressed heat‐induced loss in ability of apoPhb to reconstitution at 37°C, whereas α‐crystallin did not reveal a protective action. To compare the antiaggregation activity of intact and crosslinked α‐crystallins, an adsorption capacity (AC) of a protein chaperone with respect to a target protein was estimated. This parameter is a measure of the antiaggregation activity. Crosslinking of α‐crystallin results in 11‐fold decrease in the initial AC. The nonlinear character of the relative initial rate of apoPhb aggregation versus the [intact α‐crystallin]/[apoPhb] ratio plot is indicative of the decrease in the AC of α‐crystallin with increasing the [α‐crystallin]/[apoPhb] ratio and can be interpreted as an evidence for dynamic chaperone structure and polydispersity of α‐crystallin–target protein complexes. As for chemical chaperones, a semisaturation concentration of the latter was used as a characteristic of the antiaggregation activity. A decrease in the semisaturation concentration for proline was observed in the presence of the crowders (polyethylene glycol and Ficoll‐70).


PLOS ONE | 2011

A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins

Tatyana B. Eronina; Vera A. Borzova; Olga I. Maloletkina; Sergey Yu. Kleymenov; R.A. Asryants; Kira A. Markossian; Boris I. Kurganov

To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = K agg(T−T 0)2, where K agg is the parameter characterizing the initial rate of aggregation and T 0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T 0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets.


International Journal of Biological Macromolecules | 2014

Dual effect of arginine on aggregation of phosphorylase kinase

Tatiana B. Eronina; Natalia A. Chebotareva; Nikolai N. Sluchanko; Valeriya V. Mikhaylova; Valentina F. Makeeva; Svetlana G. Roman; Sergey Yu. Kleymenov; Boris I. Kurganov

Arginine is widely used in biotechnology as a folding enhancer and aggregation suppressor. However, its action on the stability of complexly organized oligomeric proteins, on the one hand, and its role in the formation of supramolecular structures, on the other hand, are poorly known. The investigation is concerned with the effects of arginine on protein-protein interactions using phosphorylase kinase (PhK) as an example. PhK, a 1.3MDa (αβγδ)4 hexadecameric complex, is a Ca(2+)-dependent regulatory enzyme that catalyzes phosphorylation and activation of glycogen phosphorylase b. On the basis of light scattering measurements it was shown that arginine induced aggregation of Ca(2+)-free PhK. On the contrary, when studying Ca(2+), Mg(2+)-induced aggregation of PhK at 37°C, the protective effect of arginine was demonstrated. The data on analytical ultracentrifugation are indicative of disruption of PhK hexadecameric structure under the action of arginine. Though HspB6 and HspB5 suppress aggregation of PhK they do not block the disruption effect of arginine with respect to both forms of PhK (Ca(2+)-free and Ca(2+), Mg(2+)-bound conformers). The dual effect of arginine has been interpreted from view-point of dual behaviour of arginine, functioning both like an osmolyte and a protein denaturant.


Biopolymers | 2010

Effect of 2-hydroxypropyl-β-cyclodextrin on thermal stability and aggregation of glycogen phosphorylase b from rabbit skeletal muscle.

Tatyana B. Eronina; Natalia A. Chebotareva; Sergey Yu. Kleymenov; Svetlana G. Roman; Valentina F. Makeeva; Boris I. Kurganov

The study of the kinetics of thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscles by dynamic light scattering at 48°C showed that 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) accelerated the aggregation process and induced the formation of the larger protein aggregates. The reason of the accelerating effect of HP-β-CD is destabilization of the protein molecule under action of HP-β-CD. This conclusion was supported by the data on differential scanning calorimetry and the kinetic data on thermal inactivation of Phb. It is assumed that destabilization of the Phb molecule is due to preferential binding of HP-β-CD to intermediates of protein unfolding in comparison with the original native state. The conclusion regarding the ability of the native Phb for binding of HP-β-CD was substantiated by the data on the enzyme inhibition by HP-β-CD.


Protein Engineering Design & Selection | 2012

Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations

Anastasia A. Alekseeva; Alexey A. Serenko; Ivan S. Kargov; Svyatoslav S. Savin; Sergey Yu. Kleymenov; V. I. Tishkov

The analysis of the 3D model structure of the ternary complex of recombinant formate dehydrogenase from soya Glycine max (EC 1.2.1.2., SoyFDH) with bound NAD+ and an inhibitor azide ion revealed the presence of hydrophobic Phe290 in the coenzyme-binding domain. This residue should shield the enzyme active site from solvent. On the basis of the alignment of plant FDHs sequences, Asp, Asn and Ser were selected as candidates to substitute Phe290. Computer modeling indicated the formation of two (Ser and Asn) or three (Asp) new hydrogen bonds in such mutants. The mutant SoyFDHs were expressed in Escherichia coli, purified and characterized. All amino acid substitutions increased K(м)(HCOO-) from 1.5 to 4.1-5.0 mM, whereas the K(м)(NAD+) values remained almost unchanged in the range from 9.1 to 14.0 μM, which is close to wt-SoyFDH (13.3 μM). The catalytic constants for F290N, F290D and F290S mutants of SoyFDH equaled 2.8, 5.1 and 4.1 s⁻¹, respectively; while that of the wild-type enzyme was 2.9 s⁻¹. The thermal stability of all mutant SoyFDHs was much higher compared with the wild-type enzyme. The differential scanning calorimetry data were in agreement with the results of thermal inactivation kinetics. The mutations F290S, F290N and F290D introduced into SoyFDH increased the T(m) values by 2.9°C, 4.3°C and 7.8°C, respectively. The best mutant F290D exhibited thermal stability similar to that of FDH from the plant Arabidopsis thaliana and exceeded that of the enzymes from the yeast Candida boidinii and the bacterium Moraxella sp. C1.


Macromolecular Bioscience | 2010

Effect of GroEL on Thermal Aggregation of Glycogen Phosphorylase b from Rabbit Skeletal Muscle

Tatyana B. Eronina; Natalia A. Chebotareva; Svetlana G. Bazhina; Sergey Yu. Kleymenov; Irina N. Naletova; Vladimir I. Muronetz; Boris I. Kurganov

The suppression of the thermal aggregation of glycogen phosphorylase b (Phb) from rabbit skeletal muscle by the chaperonin GroEL is studied using dynamic light scattering. It is shown that the decrease in the rate of Phb aggregation under the action of GroEL is due to the transition of the aggregation process from the kinetic regime, wherein the rate of aggregation is limited by diffusion of the interacting particles, to a regime where the sticking probability for the colliding particles becomes lower than one (reaction-limited cluster-cluster aggregation). The analytical-ultracentrifugation data show that elevated temperatures induce dissociation of the dimeric Phb. The formation of a complex between the denatured monomeric form of Phb and the dissociated forms of GroEL is detected during heating at 46 degrees C.

Collaboration


Dive into the Sergey Yu. Kleymenov's collaboration.

Top Co-Authors

Avatar

Boris I. Kurganov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kira A. Markossian

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatyana B. Eronina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vera A. Borzova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Svetlana G. Roman

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge