Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Zharikov is active.

Publication


Featured researches published by Sergey Zharikov.


American Journal of Physiology-cell Physiology | 2008

Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells

Sergey Zharikov; Karina Krotova; Hanbo Hu; Chris Baylis; Richard J. Johnson; Edward R. Block; Jawaharlal M. Patel

Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC). In isolated porcine pulmonary artery segments (PAS), UA (7.5 mg/dl) inhibits acetylcholine-induced vasodilation. The incubation of PAEC with UA caused a dose-dependent decrease in NO and cGMP production stimulated by bradykinin or Ca(2+)-ionophore A23187. We explored cellular mechanisms by which UA might cause reduced NO production focusing on the effects of UA on the l-arginine-endothelial NO synthase (eNOS) and l-arginine-arginase pathways. Incubation of PAEC with different concentrations of UA (2.5-15 mg/dl) for 24 h did not affect l-[(3)H]arginine uptake or activity/expression of eNOS. However, PAEC incubated with UA (7.5 mg/dl; 24 h) released more urea in culture media than control PAEC, suggesting that arginase activation might be involved in the UA effect. Kinetic analysis of arginase activity in PAEC lysates and rat liver and kidney homogenates demonstrated that UA activated arginase by increasing its affinity for l-arginine. An inhibitor of arginase (S)-(2-boronoethyl)-l-cysteine prevented UA-induced reduction of A23187-stimulated cGMP production by PAEC and abolished UA-induced inhibition of acetylcholine-stimulated vasodilation in PAS. We conclude that UA-induced arginase activation is a potential mechanism for reduction of NO production in PAEC.


Blood | 2010

Induction of nitric oxide by erythropoietin is mediated by the β common receptor and requires interaction with VEGF receptor 2

Larysa Sautina; Yuri Y. Sautin; Elaine Beem; Zhuo Zhou; Anna Schuler; Jennafer Brennan; Sergey Zharikov; Yanpeng Diao; Jörg Bungert; Mark S. Segal

Vascular endothelial growth factor (VEGF) and erythropoietin (EPO) have profound effects on the endothelium and endothelial progenitor cells (EPCs), which originate from the bone marrow and differentiate into endothelial cells. Both EPO and VEGF have demonstrated an ability to increase the number and performance properties of EPCs. EPC behavior is highly dependent on nitric oxide (NO), and both VEGF and EPO can stimulate intracellular NO. EPO can bind to the homodimeric EPO receptor (EPO-R) and the heterodimeric receptor, EPO-R and the common beta receptor (betaC-R). Although VEGF has several receptors, VEGF-R2 appears most critical to EPC function. We demonstrate that EPO induction of NO is dependent on the betaC-R and VEGF-R2, that VEGF induction of NO is dependent on the expression of the betaC-R, and that the betaC-R and VEGF-R2 interact. This is the first definitive functional and structural evidence of an interaction between the 2 receptors and has implications for the side effects of EPO.


American Journal of Physiology-cell Physiology | 2010

Hypoxic upregulation of arginase II in human lung endothelial cells.

Karina Krotova; Jawaharlal M. Patel; Edward R. Block; Sergey Zharikov

Activated arginase has been implicated in many diseases including cancer, immune cell dysfunction, infections, and vascular disease. Enhanced arginase activity has been reported in lungs of patients with pulmonary artery hypertension. We used hypoxia as a model for pulmonary hypertension and studied the effect of exposure to hypoxia on arginase activity in human lung microvascular endothelial cells (HMVEC). Hypoxia induces upregulation of arginase activity as well as mRNA and protein levels of arginase II (Arg II), the only arginase isoform we were able to identify in HMVEC. In endothelial cells, arginase shares and competes for the substrate l-arginine with nitric oxide (NO) synthase (NOS). Through regulation of substrate availability for NOS, arginase is able to modulate NO production. To evaluate the role of Arg II in regulation of NO production under hypoxia, we compared NO output (RFL-6 reporter assay) in cells with normal and silenced Arg II. Exposure to hypoxia led to an increase in NO levels produced by HMVEC. Inhibition of Arg II by specific small interfering RNA or by the pharmacological inhibitor BEC additionally enhanced the levels of NO. Another possible role for activated arginase is involvement in regulation of cell proliferation. However, we showed that hypoxia decreased cell proliferation and upregulated Arg II did not have an effect on cell proliferation. Since hypoxia-inducible factors (HIF) are a family of transcriptional factors activated by hypoxia, we tested the possibility of involvement of HIF-1 and HIF-2 in regulation of Arg II under hypoxia. The silencing of HIF-2 but not HIF-1 prevented the activation of Arg II by hypoxia.


British Journal of Pharmacology | 2006

Peptides modified by myristoylation activate eNOS in endothelial cells through Akt phosphorylation

Karina Krotova; Hanbo Hu; Shen-Ling Xia; Leonid Belayev; Jawaharlal M. Patel; Edward R. Block; Sergey Zharikov

1 Myristoylated pseudosubstrate of PKCζ (mPS) – a synthetic myristoylated peptide with a sequence (13 amino acids) mimicking the endogenous PKCζ pseudosubstrate region – is considered a selective cell‐permeable inhibitor of PKCζ. We present strong evidence that in endothelial cells the action of mPS is not limited to inhibition of PKC activity and that myristoylation of certain peptides can activate eNOS (endothelial nitric oxide synthase) through Akt phosphorylation. 2 mPS at micromolar concentrations (1–10 μM) induced profound phosphorylation of eNOS, Akt, ERK 1/2, and p38 MAPK in cultured pulmonary artery endothelial cells (PAEC). The same changes were observed after treatment of PAEC with a myristoylated scrambled version of mPS (mScr), whereas a cell‐permeable version of PKCζ pseudosubstrate fused to the HIV‐TAT membrane‐translocating peptide did not induce analogous changes, suggesting that myristoylation confers new properties on the peptides consisting of activation of different signaling pathways in endothelial cells. 3 In addition to mPS and mScr, a number of other myristoylated peptides induced phosphorylation of eNOS suggesting that myristoylation of peptides can activate eNOS by mechanisms unrelated to inhibition of PKC. All active myristoylated peptides contained basic amino acids motif and were longer than six amino acids. 4 Activation of eNOS by myristoylated peptides was dependent on the PI3K/Akt pathway and the rise of intracellular calcium and was associated with an elevation of cGMP levels in PAEC and with relaxation of precontracted isolated pulmonary artery segments. 5 Myristoylated peptides can be considered a new class of activators of NO production in endothelial cells and that using mPS as a specific inhibitor of PKCζ should be done with caution, especially in endothelial cells.


Medical Hypotheses | 2010

Could uric acid be a modifiable risk factor in subjects with pulmonary hypertension

Sergey Zharikov; Erik R. Swenson; Miguel A. Lanaspa; Edward R. Block; Jawaharlal M. Patel; Richard J. Johnson

A high serum uric acid is common in subjects with pulmonary hypertension. The increase in serum uric acid may be a consequence of the local tissue ischemia and/or hypoxia, and it may also result from other factors independent of ischemia or hypoxia that occur in various forms of pulmonary hypertension. While classically viewed as a secondary phenomenon, recent studies suggest that hyperuricemia may also have a role in mediating the local vasoconstriction and vascular remodeling in the pulmonary vasculature. If uric acid does have a contributory role in pulmonary hypertension, we may see an increasing prevalence of pulmonary hypertension as hyperuricemia is common in subjects with obesity and metabolic syndrome. We propose studies to investigate the role of uric acid in pulmonary hypertension and to determine if lowering serum uric acid may have clinical benefit in this condition.


Molecular and Cellular Biochemistry | 2010

Endothelial arginase II responds to pharmacological inhibition by elevation in protein level

Karina Krotova; Jawaharlal M. Patel; Edward R. Block; Sergey Zharikov

Arginase is an enzyme which converts arginine to ornithine and urea. Recently, arginase has been implicated in many physiological and pathological processes including vascular diseases. Inhibition of arginase activity by pharmacological inhibitors is a useful tool to study the biology of arginases and their possible role in therapy. There are several arginase-specific inhibitors commercially available. Herein, we show that some of these inhibitors lead to an increase in arginase II protein level and activity. These effects should be anticipated when these inhibitors are in use or during the testing of new arginase inhibitors.


American Journal of Nephrology | 2012

Arginine and Asymmetric Dimethylarginine in Puromycin Aminonucleoside-Induced Chronic Kidney Disease in the Rat

Gin-Fu Chen; Natasha C. Moningka; Jennifer M. Sasser; Sergey Zharikov; Mark A. Cunningham; You-Lin Tain; Idit F. Schwartz; Chris Baylis

Background/Aims: Reduced renal L-arginine (L-Arg) synthesis/transport, induction of arginases and increased endogenous NOS inhibitor, asymmetric dimethylarginine (ADMA) will inhibit NO production. This study investigated pathways of L-Arg synthesis/uptake/utilization, ADMA degradation and oxidant/antioxidants in puromycin aminonucleoside (PAN) chronic kidney disease (CKD). Methods: Rats were given low- (LD) or high-dose (HD) PAN and followed for 11 weeks for proteinuria. BP was measured and blood and tissues were harvested and analyzed for abundance of argininosuccinate synthase (ASS) and lyase (ASL), arginase, cationic amino acid transporter (CAT1) and dimethylargininedimethylaminohydrolase (DDAH) in kidney, cortex, aorta and liver. Arginase and DDAH activity, plasma L-Arg and ADMA, renal pathology and creatinine clearances were also measured. Results: PAN caused dose-dependent kidney damage and hypertension and creatinine clearance fell in HD-PAN. Renal ASS fell in HD-PAN, renal cortex and aortic ASL and membrane CAT1 fell in both PAN groups. There was no activation of renal arginase, but aortic arginase increased in LD-PAN. Renal DDAH activity fell moderately in LD-PAN and markedly in HD-PAN where hepatic DDAH activity also fell. Plasma L-Arg was unchanged while ADMA rose moderately and dose-dependently with PAN. There were several indices of oxidative stress which was most prominent in HD-PAN. Conclusion: Reduction in renal ASS/ASL and loss of renal cortex CAT1 compromises renal L-Arg synthesis and release. Loss of aortic CAT1 impairs L-Arg uptake. Increased plasma ADMA was associated with progressive loss of renal DDAH activity. However, loss of renal clearance and falls in hepatic DDAH activity in HD-PAN did not have additive effects on plasma ADMA.


Nephrology Dialysis Transplantation | 2010

Effects of angiotensin type 1 receptor blockade on arginine and ADMA synthesis and metabolic pathways in fawn-hooded hypertensive rats

Gin Fu Chen; László Wagner; Jennifer M. Sasser; Sergey Zharikov; Natasha C. Moningka; Chris Baylis

BACKGROUND The fawn-hooded hypertensive (FHH) rat develops spontaneous glomerulosclerosis that is ameliorated by inhibition of the angiotensin II type 1 receptor (AT-1). Since kidney damage is associated with nitric oxide (NO) deficiency, we investigated how AT-1 antagonism influenced nitric oxide synthase (NOS), as well as NOS substrate [L-arginine (L-Arg)] and inhibitor [asymmetric dimethylarginine (ADMA)]. L-Arg is synthesized by renal argininosuccinate synthase/argininosuccinate lyase (ASS/ASL) and then either consumed within the kidney by arginase II or NOS or released into the circulation. L-Arg is then taken up from plasma into cells where it can be utilized by NOS and other pathways. The competitive inhibitor of NOS, ADMA, is degraded by dimethylarginine dimethylaminohydrolase (DDAH). METHODS AND RESULTS Male FHH rats were put on a 40% casein diet for 13 weeks, and some received AT-1 antagonist which reduced blood pressure and kidney weight and prevented glomerulosclerosis and hyperfiltration. The AT-1 antagonist reduced the expression of DDAH2, increased DDAH1 and increased total DDAH activity in the kidney cortex, although there was no change in plasma or kidney cortex ADMA levels. The AT-1 antagonist caused no change in the expression of renal ASS/ASL, but reduced renal and aortic arginase expression and renal arginase activity, which could explain the increased plasma L-Arg. In separate studies, 1 week of AT-1 blockade in young FHH rats had no effect on any of these parameters. CONCLUSION Thus, the net result of AT-1 antagonist was an improved L-Arg to ADMA ratio due to the prevention of renal and vascular arginase activation which favours increased NO production. Since 1 week of AT-1 blockade in the absence of kidney damage was without effect on arginases, this suggests that the reduction in arginase activity is secondary to the prevention of structural damage rather than a direct immediate effect of AT-1 antagonism.


Endothelium-journal of Endothelial Cell Research | 2002

Metabolism of Dynorphins by Peptidases of Pulmonary Artery Endothelial Cells

Alevtina Zharikova; Sergey Zharikov; Edward R. Block; Laszlo Prokai

Degradation of several dynorphins by peptidases expressed in cultured porcine pulmonary artery endothelial cells was studied by incubation of the peptide in cell suspensions followed by electrospray ionization and tandem mass spectrometric analyses. Under the in vitro conditions applied, only the metabolism of dynorphin A1-8 occurred in a significant extent. Studies involving specific peptidase inhibitors indicated that mainly bestatin-sensitive aminopeptidases, thiorphan-sensitive endopeptidases, and cFPAAF-pAB-sensitive endopeptidases expressed by the endothelial cells were involved in the process that converted dynorphin A1-8 to dynorphin A2-8, dynorphin A1-6, and leucine enkephalin (dynorphin A1-5), respectively. These peptidases may form a metabolic barrier for the cellular penetration of intact dynorphin A1-8 and/or control effects of the circulating peptide on endothelial opioid receptors of the cells.


American Journal of Physiology-renal Physiology | 2006

A causal role for uric acid in fructose-induced metabolic syndrome

Takahiko Nakagawa; Hanbo Hu; Sergey Zharikov; Katherine R. Tuttle; Robert Short; Olena Glushakova; Xiaosen Ouyang; Daniel I. Feig; Edward R. Block; Jaime Herrera-Acosta; Jawaharlal M. Patel; Richard J. Johnson

Collaboration


Dive into the Sergey Zharikov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanbo Hu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel I. Feig

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge