Sergi Castellano
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergi Castellano.
Nature | 2004
Olivier Jaillon; Jean-Marc Aury; Frédéric Brunet; Jean-Louis Petit; Nicole Stange-Thomann; Evan Mauceli; Laurence Bouneau; Cécile Fischer; Catherine Ozouf-Costaz; Alain Bernot; Sophie Nicaud; David B. Jaffe; Sheila Fisher; Georges Lutfalla; Carole Dossat; Béatrice Segurens; Corinne Dasilva; Marcel Salanoubat; Michael Levy; Nathalie Boudet; Sergi Castellano; Véronique Anthouard; Claire Jubin; Vanina Castelli; Michael Katinka; Benoit Vacherie; Christian Biémont; Zineb Skalli; Laurence Cattolico; Julie Poulain
Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
Current Biology | 2013
Qiaomei Fu; Alissa Mittnik; Philip L. F. Johnson; Kirsten I. Bos; Martina Lari; Chengkai Sun; Liane Giemsch; Ralf Schmitz; Joachim Burger; Anna Maria Ronchitelli; Fabio Martini; Renata Grifoni Cremonesi; Ji rı́ Svoboda; Peter Bauer; David Caramelli; Sergi Castellano; David Reich; Svante Pääbo; Johannes Krause
BACKGROUND Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. RESULTS Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. CONCLUSIONS Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome.
Nature | 2016
Martin Kuhlwilm; Ilan Gronau; Melissa J. Hubisz; Cesare de Filippo; Javier Prado-Martinez; Martin Kircher; Qiaomei Fu; Hernán A. Burbano; Carles Lalueza-Fox; Marco de la Rasilla; Antonio Rosas; Pavao Rudan; Dejana Brajković; Željko Kućan; Ivan Gušić; Tomas Marques-Bonet; Aida M. Andrés; Bence Viola; Svante Pääbo; Matthias Meyer; Adam Siepel; Sergi Castellano
It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000–65,000 years ago. Here we analyse the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago. By contrast, we do not detect such a genetic contribution in the Denisovan or the two European Neanderthals. We conclude that in addition to later interbreeding events, the ancestors of Neanderthals from the Altai Mountains and early modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously thought.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Sergi Castellano; Genís Parra; Federico Sánchez-Quinto; Fernando Racimo; Martin Kuhlwilm; Martin Kircher; Susanna Sawyer; Qiaomei Fu; Anja Heinze; Birgit Nickel; Jesse Dabney; Michael Siebauer; Louise White; Hernán A. Burbano; Gabriel Renaud; Udo Stenzel; Carles Lalueza-Fox; Marco de la Rasilla; Antonio Rosas; Pavao Rudan; Dejana Brajković; Željko Kućan; Ivan Gušić; Michael V. Shunkov; Anatoli P. Derevianko; Bence Viola; Matthias Meyer; Janet Kelso; Aida M. Andrés; Svante Pääbo
Significance We use a hybridization approach to enrich the DNA from the protein-coding fraction of the genomes of two Neandertal individuals from Spain and Croatia. By analyzing these two exomes together with the genome sequence of a Neandertal from Siberia we show that the genetic diversity of Neandertals was lower than that of present-day humans and that the pattern of coding variation suggests that Neandertal populations were small and isolated from one another. We also show that genes involved in skeletal morphology have changed more than expected on the Neandertal evolutionary lineage whereas genes involved in pigmentation and behavior have changed more on the modern human lineage. We present the DNA sequence of 17,367 protein-coding genes in two Neandertals from Spain and Croatia and analyze them together with the genome sequence recently determined from a Neandertal from southern Siberia. Comparisons with present-day humans from Africa, Europe, and Asia reveal that genetic diversity among Neandertals was remarkably low, and that they carried a higher proportion of amino acid-changing (nonsynonymous) alleles inferred to alter protein structure or function than present-day humans. Thus, Neandertals across Eurasia had a smaller long-term effective population than present-day humans. We also identify amino acid substitutions in Neandertals and present-day humans that may underlie phenotypic differences between the two groups. We find that genes involved in skeletal morphology have changed more in the lineage leading to Neandertals than in the ancestral lineage common to archaic and modern humans, whereas genes involved in behavior and pigmentation have changed more on the modern human lineage.
EMBO Reports | 2001
Sergi Castellano; Nadya Morozova; Marta Morey; Marla J. Berry; Florenci Serras; Montserrat Corominas; Roderic Guigó
In selenoproteins, incorporation of the amino acid selenocysteine is specified by the UGA codon, usually a stop signal. The alternative decoding of UGA is conferred by an mRNA structure, the SECIS element, located in the 3′‐untranslated region of the selenoprotein mRNA. Because of the non‐standard use of the UGA codon, current computational gene prediction methods are unable to identify selenoproteins in the sequence of the eukaryotic genomes. Here we describe a method to predict selenoproteins in genomic sequences, which relies on the prediction of SECIS elements in coordination with the prediction of genes in which the strong codon bias characteristic of protein coding regions extends beyond a TGA codon interrupting the open reading frame. We applied the method to the Drosophila melanogaster genome, and predicted four potential selenoprotein genes. One of them belongs to a known family of selenoproteins, and we have tested experimentally two other predictions with positive results. Finally, we have characterized the expression pattern of these two novel selenoprotein genes.
EMBO Reports | 2004
Sergi Castellano; Sergey V. Novoselov; Gregory V. Kryukov; Alain Lescure; Enrique Blanco; Alain Krol; Vadim N. Gladyshev; Roderic Guigó
While the genome sequence and gene content are available for an increasing number of organisms, eukaryotic selenoproteins remain poorly characterized. The dual role of the UGA codon confounds the identification of novel selenoprotein genes. Here, we describe a comparative genomics approach that relies on the genome‐wide prediction of genes with in‐frame TGA codons, and the subsequent comparison of predictions from different genomes, wherein conservation in regions flanking the TGA codon suggests selenocysteine coding function. Application of this method to human and fugu genomes identified a novel selenoprotein family, named SelU, in the puffer fish. The selenocysteine‐containing form also occurred in other fish, chicken, sea urchin, green algae and diatoms. In contrast, mammals, worms and land plants contained cysteine homologues. We demonstrated selenium incorporation into chicken SelU and characterized the SelU expression pattern in zebrafish embryos. Our data indicate a scattered evolutionary distribution of selenoproteins in eukaryotes, and suggest that, contrary to the picture emerging from data available so far, other taxa‐specific selenoproteins probably exist.
Nucleic Acids Research | 2005
Kalin Taskov; Charles E. Chapple; Gregory V. Kryukov; Sergi Castellano; Alexey V. Lobanov; Konstantin V. Korotkov; Roderic Guigó; Vadim N. Gladyshev
Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.
Journal of Biological Chemistry | 2016
Brigelius Flohé Regina; Vadim N. Gladyshev; Elias S.J. Arnér; Marla J. Berry; Elspeth A. Bruford; Raymond F. Burk; Bradley A. Carlson; Sergi Castellano; Laurent Chavatte; Marcus Conrad; Paul R. Copeland; Alan M. Diamond; Donna M. Driscoll; A. Ferreiro; Leopold Flohé; Fiona R. Green; Roderic Guigó; Diane E. Handy; Dolph L. Hatfield; John E. Hesketh; Peter R. Hoffmann; Arne Holmgren; Robert J. Hondal; Michael T. Howard; Kaixun Huang; Hwa Young Kim; Ick Young Kim; Josef Köhrle; Alain Krol; Gregory V. Kryukov
The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.
Nucleic Acids Research | 2008
Sergi Castellano; Vadim N. Gladyshev; Roderic Guigó; Marla J. Berry
Selenoproteins are a diverse group of proteins usually misidentified and misannotated in sequence databases. The presence of an in-frame UGA (stop) codon in the coding sequence of selenoprotein genes precludes their identification and correct annotation. The in-frame UGA codons are recoded to cotranslationally incorporate selenocysteine, a rare selenium-containing amino acid. The development of ad hoc experimental and, more recently, computational approaches have allowed the efficient identification and characterization of the selenoproteomes of a growing number of species. Today, dozens of selenoprotein families have been described and more are being discovered in recently sequenced species, but the correct genomic annotation is not available for the majority of these genes. SelenoDB is a long-term project that aims to provide, through the collaborative effort of experimental and computational researchers, automatic and manually curated annotations of selenoprotein genes, proteins and SECIS elements. Version 1.0 of the database includes an initial set of eukaryotic genomic annotations, with special emphasis on the human selenoproteome, for immediate inspection by selenium researchers or incorporation into more general databases. SelenoDB is freely available at http://www.selenodb.org.
Science | 2016
Marc de Manuel; Martin Kuhlwilm; Peter Frandsen; Vitor C. Sousa; Tariq Desai; Javier Prado-Martinez; Jessica Hernandez-Rodriguez; Isabelle Dupanloup; Oscar Lao; Pille Hallast; Joshua M. Schmidt; José María Heredia-Genestar; Andrea Benazzo; Guido Barbujani; Benjamin M. Peter; Lukas F. K. Kuderna; Ferran Casals; Samuel Angedakin; Mimi Arandjelovic; Christophe Boesch; Hjalmar S. Kühl; Linda Vigilant; Kevin E. Langergraber; John Novembre; Marta Gut; Ivo Gut; Arcadi Navarro; Frands Carlsen; Aida M. Andrés; Hans R. Siegismund
Of chimpanzees and bonobos Modern non-African human genomes contain genomic remnants that suggest that there was interbreeding between ancient humans and archaic hominoid lineages. Now, de Manuel et al. show similar ancestral interbreeding between the ancestors of todays chimpanzees and bonobos (see the Perspective by Hoelzel). The study also provides population-specific genetic markers that may be valuable for conservation efforts. Science, this issue p. 477; see also p. 414 Genome sequences reveal ancient interbreeding between chimpanzees and bonobos. Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales. Multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200,000 and 550,000 years ago, probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another, possibly more recent contact (after 200,000 years ago), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.