Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergi Ferré is active.

Publication


Featured researches published by Sergi Ferré.


Trends in Neurosciences | 1997

Adenosine–dopamine receptor–receptor interactions as an integrative mechanism in the basal ganglia

Sergi Ferré; Kjell Fuxe; Bertil B. Fredholm; Micaela Morelli; Patrizia Popoli

Increasing evidence suggests that antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia are involved in the motor depressant effects of adenosine receptor agonists and the motor stimulant effects of adenosine receptor antagonists, such as caffeine. The GABAergic striatopallidal neurons are regulated by interacting adenosine A2A and dopamine D2 receptors. On the other hand, the GABAergic striatonigral and striatoentopeduncular neurons seem to be regulated by interacting adenosine A1 and dopamine D1 receptors. Furthermore, behavioural studies have revealed interactions between adenosine A2A and dopamine D1 receptors that occur at the network level. These adenosine-dopamine receptor-receptor interactions might offer new therapeutic leads for basal ganglia disorders.


The Journal of Neuroscience | 2006

Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1–A2A Receptor Heteromers

Francisco Ciruela; Vicent Casadó; Ricardo J. Rodrigues; Rafael Luján; Javier Burgueño; Meritxell Canals; Janusz Borycz; Nelson Rebola; Steven R. Goldberg; Josefa Mallol; Antonio Cortés; Enric I. Canela; Juan F. López-Giménez; Graeme Milligan; Carme Lluis; Rodrigo A. Cunha; Sergi Ferré; Rafael Franco

The functional role of heteromers of G-protein-coupled receptors is a matter of debate. In the present study, we demonstrate that heteromerization of adenosine A1 receptors (A1Rs) and A2A receptors (A2ARs) allows adenosine to exert a fine-tuning modulation of glutamatergic neurotransmission. By means of coimmunoprecipitation, bioluminescence and time-resolved fluorescence resonance energy transfer techniques, we showed the existence of A1R–A2AR heteromers in the cell surface of cotransfected cells. Immunogold detection and coimmunoprecipitation experiments indicated that A1R and A2AR are colocalized in the same striatal glutamatergic nerve terminals. Radioligand-binding experiments in cotransfected cells and rat striatum showed that a main biochemical characteristic of the A1R–A2AR heteromer is the ability of A2AR activation to reduce the affinity of the A1R for agonists. This provides a switch mechanism by which low and high concentrations of adenosine inhibit and stimulate, respectively, glutamate release. Furthermore, it is also shown that A1R–A2AR heteromers constitute a unique target for caffeine and that chronic caffeine treatment leads to modifications in the function of the A1R–A2AR heteromer that could underlie the strong tolerance to the psychomotor effects of caffeine.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: Implications for striatal neuronal function

Sergi Ferré; Marzena Karcz-Kubicha; Bruce T. Hope; Patrizia Popoli; Javier Burgueño; M. Angeles Gutiérrez; Vicent Casadó; Kjell Fuxe; Steven R. Goldberg; Carme Lluis; Rafael Franco; Francisco Ciruela

The physiological meaning of the coexpression of adenosine A2A receptors and group I metabotropic glutamate receptors in γ- aminobutyric acid (GABA)ergic striatal neurons is intriguing. Here we provide in vitro and in vivo evidence for a synergism between adenosine and glutamate based on subtype 5 metabotropic glutamate (mGluR5) and adenosine A2A (A2AR) receptor/receptor interactions. Colocalization of A2AR and mGluR5 at the membrane level was demonstrated in nonpermeabilized human embryonic kidney (HEK)-293 cells transiently cotransfected with both receptors by confocal laser microscopy. Complexes containing A2AR and mGluR5 were demonstrated by Western blotting of immunoprecipitates of either Flag-A2AR or hemagglutinin-mGluR5 in membrane preparations from cotransfected HEK-293 cells and of native A2AR and mGluR5 in rat striatal membrane preparations. In cotransfected HEK-293 cells a synergistic effect on extracellular signal-regulated kinase 1/2 phosphorylation and c-fos expression was demonstrated upon A2AR/mGluR5 costimulation. No synergistic effect was observed at the second messenger level (cAMP accumulation and intracellular calcium mobilization). Accordingly, a synergistic effect on c-fos expression in striatal sections and on counteracting phencyclidine-induced motor activation was also demonstrated after the central coadministration of A2AR and mGluR5 agonists to rats with intact dopaminergic innervation. The results suggest that a functional mGluR5/A2AR interaction is required to overcome the well-known strong tonic inhibitory effect of dopamine on striatal adenosine A2AR function.


Pharmacological Reviews | 2003

Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons

Luigi F. Agnati; Sergi Ferré; Carme Lluis; Rafael Franco; Kjell Fuxe

The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as δ/κ opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinsons disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.


Pharmacological Reviews | 2014

G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives

Sergi Ferré; Vicent Casadó; Lakshmi A. Devi; Marta Filizola; Ralf Jockers; Martin J. Lohse; Graeme Milligan; Jean-Philippe Pin; Xavier Guitart

Most evidence indicates that, as for family C G protein–coupled receptors (GPCRs), family A GPCRs form homo- and heteromers. Homodimers seem to be a predominant species, with potential dynamic formation of higher-order oligomers, particularly tetramers. Although monomeric GPCRs can activate G proteins, the pentameric structure constituted by one GPCR homodimer and one heterotrimeric G protein may provide a main functional unit, and oligomeric entities can be viewed as multiples of dimers. It still needs to be resolved if GPCR heteromers are preferentially heterodimers or if they are mostly constituted by heteromers of homodimers. Allosteric mechanisms determine a multiplicity of possible unique pharmacological properties of GPCR homomers and heteromers. Some general mechanisms seem to apply, particularly at the level of ligand-binding properties. In the frame of the dimer-cooperativity model, the two-state dimer model provides the most practical method to analyze ligand–GPCR interactions when considering receptor homomers. In addition to ligand-binding properties, unique properties for each GPCR oligomer emerge in relation to different intrinsic efficacy of ligands for different signaling pathways (functional selectivity). This gives a rationale for the use of GPCR oligomers, and particularly heteromers, as novel targets for drug development. Herein, we review the functional and pharmacological properties of GPCR oligomers and provide some guidelines for the application of discrete direct screening and high-throughput screening approaches to the discovery of receptor-heteromer selective compounds.


Nature Chemical Biology | 2009

Building a new conceptual framework for receptor heteromers

Sergi Ferré; Ruben Baler; Michel Bouvier; Marc G. Caron; Lakshmi A. Devi; Thierry Durroux; Kjell Fuxe; Susan R. George; Jonathan A. Javitch; Martin J. Lohse; Ken Mackie; Graeme Milligan; Kevin D. G. Pfleger; Jean-Philippe Pin; Nora D. Volkow; Maria Waldhoer; Amina S. Woods; Rafael Franco

Receptor heteromers constitute a new area of research that is reshaping our thinking about biochemistry, cell biology, pharmacology and drug discovery. In this commentary, we recommend clear definitions that should facilitate both information exchange and research on this growing class of transmembrane signal transduction units and their complex properties. We also consider research questions underlying the proposed nomenclature, with recommendations for receptor heteromer identification in native tissues and their use as targets for drug development.


Journal of Neurochemistry | 2008

An update on the mechanisms of the psychostimulant effects of caffeine

Sergi Ferré

There has been a long debate about the predominant involvement of the different adenosine receptor subtypes and the preferential role of pre‐ versus post‐synaptic mechanisms in the psychostimulant effects of the adenosine receptor antagonist caffeine. Both striatal A1 and A2A receptors are involved in the motor‐activating and probably reinforcing effects of caffeine, although they play a different role under conditions of acute or chronic caffeine administration. The present review emphasizes the key integrative role of adenosine and adenosine receptor heteromers in the computation of information at the level of the striatal spine module (SSM). This local module is mostly represented by the dendritic spine of the medium spiny neuron with its glutamatergic and dopaminergic synapses and astroglial processes that wrap the glutamatergic synapse. In the SSM, adenosine acts both pre‐ and post‐synaptically through multiple mechanisms, which depend on heteromerization of A1 and A2A receptors among themselves and with D1 and D2 receptors, respectively. A critical aspect of the mechanisms of the psychostimulant effects of caffeine is its ability to release the pre‐ and post‐synaptic brakes that adenosine imposes on dopaminergic neurotransmission by acting on different adenosine receptor heteromers localized in different elements of the SSM.


Journal of Neural Transmission | 1993

Noradrenergic modulation of midbrain dopamine cell firing elicited by stimulation of the locus coeruleus in the rat

J. Grenhoff; Magnus Nisell; Sergi Ferré; G. Aston-Jones; Torgny H. Svensson

Electrical stimulation techniques were employed in the chloral hydrate anaesthetized male rat to evaluate if the pontine noradrenergic nucleus locus coeruleus can influence the activity of midbrain dopamine neurons in the ventral tegmental area and zona compacta, substantia nigra. Single-pulse locus coeruleus stimulation evoked an excitation, followed by an inhibition, of the electrical activity of single midbrain dopamine neurons. Neither of these responses were observed in animals pretreated with reserpine, implicating noradrenaline as a mediator. The α1-adrenoceptor antagonist prazosin decreased the excitation, while other adrenoceptor antagonists were without general effect. Burst-type stimulation produced only a more long-lasting inhibition. The influence from the locus coeruleus on midbrain dopamine neurons could be important in behavioural situations involving novelty and reward, and might also be of importance for the actions of psychotropic drugs.


Brain Research Reviews | 1998

Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia

Kjell Fuxe; Sergi Ferré; Michele Zoli; Luigi F. Agnati

An analysis at the network and membrane level has provided evidence that antagonistic interactions between adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptors in the ventral and dorsal striatum are at least in part responsible for the motor stimulant effects of adenosine receptor antagonists like caffeine and for the motor depressant actions of adenosine receptor agonists. The results obtained in stably cotransfected cells also underline the hypothesis that the intramembrane A2A/D2 and A1/D1 receptor interactions represent functionally important mechanisms that may be the major mechanism for the demonstrated antagonistic A2A/D2 and A1/D1 receptor interactions found in vivo in behavioural studies and in studies on in vivo microdialysis of the striopallidal and strioentopeduncular GABAergic pathways. A major mechanism for the direct intramembrane A2A/D2 and A1/D1 receptor interactions may involve formation of A2A/D2 and A1/D1 heterodimers leading to allosteric changes that will alter the affinity as well as the G protein coupling and thus the efficacy to control the target proteins in the membranes. This is the first molecular network to cellular integration in the nerve cell membrane and may be well suited for a number of integrated tasks and can be performed in a short-time scale, in comparison with the very long-time scale observed when receptor heteroregulation involves phosphorylation or receptor resynthesis. Multiple receptor-receptor interactions within the membranes through formation of receptor clusters may lead to the storage of information within the membranes. Such molecular circuits can represent hidden layers within the membranes that substantially increase the computational potential of neuronal networks. These molecular circuits are biased and may therefore represent part of the molecular mechanism for the storage of memory traces (engrams) in the membranes.


Psychopharmacology | 1997

Adenosine-dopamine interactions in the ventral striatum Implications for the treatment of schizophrenia

Sergi Ferré

Abstract The ventral striatum is included in brain circuits which connect brain areas classically ascribed to the motor or to the limbic system. In fact, the ventral striatum is involved in the connection between motivationally relevant stimuli and adaptive behaviours. Dopamine neurotransmission in the ventral striatum is essential for the increase in motor activity produced by motivational, salient, stimuli, such as food or novelty or by the administration of psychostimulants. Adenosine plays a role opposite to dopamine in the striatum and adenosine agonists produce similar behavioural effects as dopamine antagonists. On the other hand, adenosine antagonists, like caffeine, produce similar effects to increased dopaminergic neurotransmission in the striatum. Specific antagonistic interactions between specific subtypes of adenosine and dopamine receptors in the basal ganglia play an essential role in the behavioural effects of adenosine agonists and antagonists. In particular, a strong antagonistic interaction between adenosine A2A and dopamine D2 receptors seems to take place in the striopallidal GABAergic neurons which originate in the ventral striatum. Therefore, adenosine A2A agonists provide a potential new treatment for schizophrenia, since the dopamine D2 receptors of the ventral striopallidal neurons appear to be involved in the antipsychotic effects of neuroleptics. In fact, in animal models, the adenosine A2A agonist CGS 21680 has a profile of antipsychotic with a low liability to induce extrapyramidal side effects.

Collaboration


Dive into the Sergi Ferré's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carme Lluis

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven R. Goldberg

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi F. Agnati

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Carmen Lluis

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge