Sergine Even
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergine Even.
Nucleic Acids Research | 2005
Sergine Even; Olivier Pellegrini; Léna Zig; Valérie Labas; Joëlle Vinh; Dominique Bréchemmier-Baey; Harald Putzer
Many prokaryotic organisms lack an equivalent of RNase E, which plays a key role in mRNA degradation in Escherichia coli. In this paper, we report the purification and identification by mass spectrometry in Bacillus subtilis of two paralogous endoribonucleases, here named RNases J1 and J2, which share functional homologies with RNase E but no sequence similarity. Both enzymes are able to cleave the B.subtilis thrS leader at a site that can also be cleaved by E.coli RNase E. We have previously shown that cleavage at this site increases the stability of the downstream messenger. Moreover, RNases J1/J2 are sensitive to the 5′ phosphorylation state of the substrate in a site-specific manner. Orthologues of RNases J1/J2, which belong to the metallo-β-lactamase family, are evolutionarily conserved in many prokaryotic organisms, representing a new family of endoribonucleases. RNases J1/J2 appear to be implicated in regulatory processing/maturation of specific mRNAs, such as the T-box family members thrS and thrZ, but may also contribute to global mRNA degradation.
Nucleic Acids Research | 2008
Gaëlle André; Sergine Even; Harald Putzer; Pierre Burguière; Christian Croux; Antoine Danchin; Isabelle Martin-Verstraete; Olga Soutourina
The ubiGmccBA operon of Clostridium acetobutylicum is involved in methionine to cysteine conversion. We showed that its expression is controlled by a complex regulatory system combining several RNA-based mechanisms. Two functional convergent promoters associated with transcriptional antitermination systems, a cysteine-specific T-box and an S-box riboswitch, are located upstream of and downstream from the ubiG operon, respectively. Several antisense RNAs were synthesized from the downstream S-box-dependent promoter, resulting in modulation of the level of ubiG transcript and of MccB activity. In contrast, the upstream T-box system did not appear to play a major role in regulation, leaving antisense transcription as the major regulatory mechanism for the ubiG operon. The abundance of sense and antisense transcripts was inversely correlated with the sulfur source availability. Deletion of the downstream promoter region completely abolished the sulfur-dependent control of the ubiG operon, and the expression of antisense transcripts in trans did not restore the regulation of the operon. Our data revealed important insights into the molecular mechanism of cis-antisense-mediated regulation, a control system only rarely observed in prokaryotes. We proposed a regulatory model in which the antisense RNA controlled the expression of the ubiG operon in cis via transcriptional interference at the ubiG locus.
Journal of Bacteriology | 2001
Sergine Even; Nic D. Lindley; Muriel Cocaign-Bousquet
The metabolic characteristics of Lactococcus lactis IL1403 were examined on two different growth media with respect to the physiological response to two sugars, glucose and galactose. Analysis of specific metabolic rates indicated that despite significant variations in the rates of both growth and sugar consumption, homolactic fermentation was maintained for all cultures due to the low concentration of either pyruvate-formate lyase or alcohol dehydrogenase. When the ionophore monensin was added to the medium, flux through glycolysis was not increased, suggesting a catabolic flux limitation, which, with the low intracellular concentrations of glycolytic intermediates and high in vivo glycolytic enzyme capacities, may be at the level of sugar transport. To assess transcription, a novel DNA macroarray technology employed RNA labeled in vitro with digoxigenin and detection of hybrids with an alkaline phosphatase-antidigoxigenin conjugate. This method showed that several genes of glycolysis were expressed to higher levels on glucose and that the genes of the mixed-acid pathway were expressed to higher levels on galactose. When rates of enzyme synthesis are compared to transcript concentrations, it can be deduced that some translational regulation occurs with threefold-higher translational efficiency in cells grown on glucose.
International Journal of Food Microbiology | 2010
Sergine Even; Sabine Leroy; Cathy Charlier; Nouri L. Ben Zakour; Jean-Paul Chacornac; Isabelle Lebert; Emmanuel Jamet; Marie-Hélène Desmonts; Emmanuel Coton; Sylvie Pochet; Pierre-Yves Donnio; Michel Gautier; Régine Talon; Yves Le Loir
Some coagulase negative staphylococci (CNS) species play an important role in the fermentation of meat and milk products and are considered as food-grade. However, the increasing clinical significance of CNS and the presence of undesirable and unsafe properties in CNS question their presence or use in food. Our goal was to assess the safety of CNS by developing a diagnostic microarray targeting 268 genes corresponding to safety hazards in a food context i.e. toxins (especially enterotoxins) and determinants of antibiotic resistance and biogenic amine production. Target genes were selected among staphylococci and Gram-positive species that may be in contact with CNS in foodstuffs. The diagnostic microarray was used to screen 129 strains belonging to the 2 dominant species isolated from foodstuffs (S. equorum and S. xylosus) and the 2 main species isolated both in foodstuffs and clinical samples (S. epidermidis and S. saprophyticus). Microarray data were further completed by antibiograms and measurement of biogenic amine production. Safety hazards associated with CNS were mostly limited to the presence of antibiotic resistance. Seventy-one percent of the strains possessed at least one gene encoding antibiotic resistance, while only one strain carried an enterotoxin gene. Most strains did not carry any genes encoding staphylococcal toxins (68%), non-staphylococcal toxins (95%) or decarboxylases involved in biogenic amine production (78%). Food safety hazards were more pronounced in S. epidermidis than in the three other species regardless the food or clinical origin of the strains. Seventy-six percent of the strains carrying genes encoding staphylococcal toxin and 69% of strains carrying 5 or more antibiotic determinants belonged to S. epidermidis species. The dominant antibiotic resistance targeted erythromycin, tetracycline and penicillin and were generally traced back to the presence of tetK and blaZ in the two latest cases. Six percent of the food-related strains produced significant amounts of biogenic amines in vitro without any of the corresponding genes detected, reflecting a lack of knowledge on genetic determinants of such production in staphylococci. This work gives a first picture of safety hazards within four species of CNS frequently isolated from food or clinical environment.
Applied and Environmental Microbiology | 2009
Sergine Even; Cathy Charlier; Sébastien Nouaille; Nouri L. Ben Zakour; Marina Cretenet; Fabien J. Cousin; Michel Gautier; Muriel Cocaign-Bousquet; Pascal Loubiere; Yves Le Loir
ABSTRACT Staphylococcus aureus is responsible for numerous food poisonings due to the production of enterotoxins by strains contaminating foodstuffs, especially dairy products. Several parameters, including interaction with antagonistic flora such as Lactococcus lactis, a lactic acid bacterium widely used in the dairy industry, can modulate S. aureus proliferation and virulence expression. We developed a dedicated S. aureus microarray to investigate the effect of L. lactis on staphylococcal gene expression in mixed cultures. This microarray was used to establish the transcriptomic profile of S. aureus in mixed cultures with L. lactis in a chemically defined medium held at a constant pH (6.6). Under these conditions, L. lactis hardly affected S. aureus growth. The expression of most genes involved in the cellular machinery, carbohydrate and nitrogen metabolism, and stress responses was only slightly modulated: a short time lag in mixed compared to pure cultures was observed. Interestingly, the induction of several virulence factors and regulators, including the agr locus, sarA, and some enterotoxins, was strongly affected. This work clearly underlines the complexity of L. lactis antagonistic potential for S. aureus and yields promising leads for investigations into nonantibiotic biocontrol of this major pathogen.
Applied and Environmental Microbiology | 2011
Marina Cretenet; Valérie Laroute; Vincent Ulvé; Sophie Jeanson; S. Nouaille; Sergine Even; Michel Piot; Laurence Girbal; Yves Le Loir; Pascal Loubière; Sylvie Lortal; Muriel Cocaign-Bousquet
ABSTRACT Lactococcus lactis is used extensively for the production of various cheeses. At every stage of cheese fabrication, L. lactis has to face several stress-generating conditions that result from its own modification of the environment as well as externally imposed conditions. We present here the first in situ global gene expression profile of L. lactis in cheeses made from milk concentrated by ultrafiltration (UF-cheeses), a key economical cheese model. The transcriptomic response of L. lactis was analyzed directly in a cheese matrix, starting from as early as 2 h and continuing for 7 days. The growth of L. lactis stopped after 24 h, but metabolic activity was maintained for 7 days. Conservation of its viability relied on an efficient proteolytic activity measured by an increasing, quantified number of free amino acids in the absence of cell lysis. Extensive downregulation of genes under CodY repression was found at day 7. L. lactis developed multiple strategies of adaptation to stressful modifications of the cheese matrix. In particular, expression of genes involved in acidic- and oxidative-stress responses was induced. L. lactis underwent unexpected carbon limitation characterized by an upregulation of genes involved in carbon starvation, principally due to the release of the CcpA control. We report for the first time that in spite of only moderately stressful conditions, lactococci phage is repressed under UF-cheese conditions.
Journal of Bacteriology | 2008
Nouri L. Ben Zakour; Daniel E. Sturdevant; Sergine Even; Caitriona M. Guinane; Corinne Barbey; Priscila D. Alves; Marie-Françoise Cochet; Michel Gautier; Michael Otto; J. Ross Fitzgerald; Yves Le Loir
Staphylococcus aureus causes disease in humans and a wide array of animals. Of note, S. aureus mastitis of ruminants, including cows, sheep, and goats, results in major economic losses worldwide. Extensive variation in genome content exists among S. aureus pathogenic clones. However, the genomic variation among S. aureus strains infecting different animal species has not been well examined. To investigate variation in the genome content of human and ruminant S. aureus, we carried out whole-genome PCR scanning (WGPS), comparative genomic hybridizations (CGH), and the directed DNA sequence analysis of strains of human, bovine, ovine, and caprine origin. Extensive variation in genome content was discovered, including host- and ruminant-specific genetic loci. Ovine and caprine strains were genetically allied, whereas bovine strains were heterogeneous in gene content. As expected, mobile genetic elements such as pathogenicity islands and bacteriophages contributed to the variation in genome content between strains. However, differences specific for ruminant strains were restricted to regions of the conserved core genome, which contained allelic variation in genes encoding proteins of known and unknown function. Many of these proteins are predicted to be exported and could play a role in host-pathogen interactions. The genomic regions of difference identified by the whole-genome approaches adopted in the current study represent excellent targets for studies of the molecular basis of S. aureus host adaptation.
PLOS ONE | 2011
Caroline Le Maréchal; Núbia Seyffert; Julien Jardin; David Hernandez; Gwénaël Jan; Lucie Rault; Vasco Azevedo; Patrice Francois; Jacques Schrenzel; Maarten van de Guchte; Sergine Even; Nadia Berkova; Richard Thiéry; J. Ross Fitzgerald; Eric Vautor; Yves Le Loir
Background S. aureus is one of the main pathogens involved in ruminant mastitis worldwide. The severity of staphylococcal infection is highly variable, ranging from subclinical to gangrenous mastitis. This work represents an in-depth characterization of S. aureus mastitis isolates to identify bacterial factors involved in severity of mastitis infection. Methodology/Principal Findings We employed genomic, transcriptomic and proteomic approaches to comprehensively compare two clonally related S. aureus strains that reproducibly induce severe (strain O11) and milder (strain O46) mastitis in ewes. Variation in the content of mobile genetic elements, iron acquisition and metabolism, transcriptional regulation and exoprotein production was observed. In particular, O11 produced relatively high levels of exoproteins, including toxins and proteases known to be important in virulence. A characteristic we observed in other S. aureus strains isolated from clinical mastitis cases. Conclusions/Significance Our data are consistent with a dose-dependant role of some staphylococcal factors in the hypervirulence of strains isolated from severe mastitis. Mobile genetic elements, transcriptional regulators, exoproteins and iron acquisition pathways constitute good targets for further research to define the underlying mechanisms of mastitis severity.
Applied and Environmental Microbiology | 2013
Damien Bouchard; Lucie Rault; Nadia Berkova; Yves Le Loir; Sergine Even
ABSTRACT Staphylococcus aureus is a major pathogen that is responsible for mastitis in dairy herds. S. aureus mastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability of S. aureus to invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability of Lactobacillus casei strains to prevent invasion of bMEC by two S. aureus bovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively. L. casei strains affected adhesion and/or internalization of S. aureus in a strain-dependent manner. Interestingly, L. casei CIRM-BIA 667 reduced S. aureus Newbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two other L. casei strains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate of S. aureus was not affected by L. casei. It should be noted that L. casei was internalized at a low rate but survived in bMEC cells with a better efficiency than that of S. aureus RF122. Inhibition of S. aureus adhesion was maintained with heat-killed L. casei, whereas contact between live L. casei and S. aureus or bMEC was required to prevent S. aureus internalization. This first study of the antagonism of LAB toward S. aureus in a mammary context opens avenues for the development of novel control strategies against this major pathogen.
Environmental Microbiology Reports | 2011
Marina Cretenet; S. Nouaille; Jennifer Thouin; Lucie Rault; Ludwig Stenz; Patrice Francois; Jacques-Antoine Hennekinne; Michel Piot; Marie Bernadette Maillard; Jacques Fauquant; Pascal Loubière; Yves Le Loir; Sergine Even
In complex environments such as cheeses, the lack of relevant information on the physiology and virulence expression of pathogenic bacteria and the impact of endogenous microbiota has hindered progress in risk assessment and control. Here, we investigated the behaviour of Staphylococcus aureus, a major foodborne pathogen, in a cheese matrix, either alone or in the presence of Lactococcus lactis, as a dominant species of cheese ecosystems. The dynamics of S. aureus was explored in situ by coupling a microbiological and, for the first time, a transcriptomic approach. Lactococcus lactis affected the carbohydrate and nitrogen metabolisms and the stress response of S. aureus by acidifying, proteolysing and decreasing the redox potential of the cheese matrix. Enterotoxin expression was positively or negatively modulated by both L. lactis and the cheese matrix itself, depending on the enterotoxin type. Among the main enterotoxins involved in staphylococcal food poisoning, sea expression was slightly favoured in the presence of L. lactis, whereas a strong repression of sec4 was observed in cheese matrix, even in the absence of L. lactis, and correlated with a reduced saeRS expression. Remarkably, the agr system was downregulated by the presence of L. lactis, in part because of the decrease in pH. This study highlights the intimate link between environment, metabolism and virulence, as illustrated by the influence of the cheese matrix context, including the presence of L. lactis, on two major virulence regulators, the agr system and saeRS.