Sergio Abonante
University of Calabria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio Abonante.
Environmental Health Perspectives | 2012
Marco Pupo; Assunta Pisano; Rosamaria Lappano; Maria Francesca Santolla; Ernestina Marianna De Francesco; Sergio Abonante; Camillo Rosano; Marcello Maggiolini
Background: Bisphenol A (BPA) is the principal constituent of baby bottles, reusable water bottles, metal cans, and plastic food containers. BPA exerts estrogen-like activity by interacting with the classical estrogen receptors (ERα and ERβ) and through the G protein-coupled receptor (GPR30/GPER). In this regard, recent studies have shown that GPER was involved in the proliferative effects induced by BPA in both normal and tumor cells. Objectives: We studied the transduction signaling pathways through which BPA influences cell proliferation and migration in human breast cancer cells and cancer-associated fibroblasts (CAFs). Methods and results: We used as a model system SKBR3 breast cancer cells and CAFs that lack the classical ERs. Specific pharmacological inhibitors and gene-silencing procedures were used to show that BPA induces the expression of the GPER target genes c-FOS, EGR-1, and CTGF through the GPER/EGFR/ERK transduction pathway in SKBR3 breast cancer cells and CAFs. Moreover, we observed that GPER is required for growth effects and migration stimulated by BPA in both cell types. Conclusions: Results indicate that GPER is involved in the biological action elicited by BPA in breast cancer cells and CAFs. Hence, GPER-mediated signaling should be included among the transduction mechanisms through which BPA may stimulate cancer progression.
Environmental Health Perspectives | 2008
Lidia Albanito; Rosamaria Lappano; Antonio Madeo; Adele Chimento; Eric R. Prossnitz; Anna Rita Cappello; Vincenza Dolce; Sergio Abonante; Vincenzo Pezzi; Marcello Maggiolini
Background Atrazine, one of the most common pesticide contaminants, has been shown to up-regulate aromatase activity in certain estrogen-sensitive tumors without binding or activating the estrogen receptor (ER). Recent investigations have demonstrated that the orphan G-protein–coupled receptor 30 (GPR30), which is structurally unrelated to the ER, mediates rapid actions of 17β-estradiol and environmental estrogens. Objectives Given the ability of atrazine to exert estrogen-like activity in cancer cells, we evaluated the potential of atrazine to signal through GPR30 in stimulating biological responses in cancer cells. Methods and results Atrazine did not transactivate the endogenous ERα in different cancer cell contexts or chimeric proteins encoding the ERα and ERβ hormone-binding domain in gene reporter assays. Moreover, atrazine neither regulated the expression of ERα nor stimulated aromatase activity. Interestingly, atrazine induced extracellular signal-regulated kinase (ERK) phosphorylation and the expression of estrogen target genes. Using specific signaling inhibitors and gene silencing, we demonstrated that atrazine stimulated the proliferation of ovarian cancer cells through the GPR30–epidermal growth factor receptor transduction pathway and the involvement of ERα. Conclusions Our results indicate a novel mechanism through which atrazine may exert relevant biological effects in cancer cells. On the basis of the present data, atrazine should be included among the environmental contaminants potentially able to signal via GPR30 in eliciting estrogenic action.
Journal of Biological Chemistry | 2012
Maria Francesca Santolla; Rosamaria Lappano; Paola De Marco; Marco Pupo; Adele Vivacqua; Diego Sisci; Sergio Abonante; Domenico Iacopetta; Anna Rita Cappello; Vincenza Dolce; Marcello Maggiolini
Background: Fatty acid synthase (FASN) is a key lipogenic enzyme regulated by various factors, including estrogens. Results: GPER mediates FASN expression and activity induced by estrogens in cancer cells. Conclusion: Fatty acid biogenesis is regulated by estrogens through GPER. Significance: GPER may be included among the transduction mediators involved by estrogens in regulating FASN expression and activity. Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many tumors. Fatty acid synthase (FASN) is a key lipogenic enzyme catalyzing the terminal steps in the de novo biogenesis of fatty acids. In cancer cells, FASN may act as a metabolic oncogene, given that it confers growth and survival advantages to these cells, whereas its inhibition effectively and selectively kills tumor cells. Hormones such as estrogens and growth factors contribute to the transcriptional regulation of FASN expression also through the activation of downstream signaling and a cross-talk among diverse transduction pathways. In this study, we demonstrate for the first time that 17β-estradiol (E2) and the selective GPER ligand G-1 regulate FASN expression and activity through the GPER-mediated signaling, which involved the EGF receptor/ERK/c-Fos/AP1 transduction pathway, as ascertained by using specific pharmacological inhibitors, performing gene-silencing experiments and ChIP assays in breast SkBr3, colorectal LoVo, hepatocarcinoma HepG2 cancer cells, and breast cancer-associated fibroblasts. In addition, the proliferative effects induced by E2 and G-1 in these cells involved FASN as the inhibitor of its activity, named cerulenin, abolished the growth response to both ligands. Our data suggest that GPER may be included among the transduction mediators involved by estrogens in regulating FASN expression and activity in cancer cells and cancer-associated fibroblasts that strongly contribute to cancer progression.
Breast Cancer Research and Treatment | 2012
Adele Vivacqua; Enrica Romeo; Paola De Marco; Ernestina Marianna De Francesco; Sergio Abonante; Marcello Maggiolini
Early growth response-1 (Egr-1) is an immediate early gene involved in relevant biological events including the proliferation of diverse types of cell tumors. In a microarray analysis performed in breast cancer cells, 17β-estradiol (E2) and the estrogen receptor antagonist 4-hydroxitamoxifen (OHT) up-regulated Egr-1 through the G protein-coupled receptor named GPR30/GPER. Hence, in this study, we aimed to provide evidence regarding the ability of E2, OHT and the selective GPER ligand G-1 to regulate Egr-1 expression and function through the GPER/EGFR/ERK transduction pathway in both Ishikawa (endometrial) and SkBr3 (breast) cancer cells. Interestingly, we demonstrate that Egr-1 is involved in the transcription of genes regulating cell proliferation like CTGF and cyclin D1 and required for the proliferative effects induced by E2, OHT, and G-1 in both Ishikawa and SkBr3 cells. In addition, we show that GPER mediates the expression of Egr-1 also in carcinoma-associated fibroblasts (CAFs). Our data suggest that Egr-1 may represent an important mediator of the biological effects induced by E2 and OHT through GPER/EGFR/ERK signaling in breast and endometrial cancer cells. The results obtained in CAFs provide further evidence regarding the potential role exerted by the GPER-dependent Egr-1 up-regulation in tumor development and progression. Therefore, Egr-1 may be included among the bio-markers of estrogen and antiestrogen actions and may be considered as a further therapeutic target in both breast and endometrial tumors.
Molecular and Cellular Endocrinology | 2013
Marco Pupo; Adele Vivacqua; Ida Perrotta; Assunta Pisano; Saveria Aquila; Sergio Abonante; Anna Gasperi-Campani; Vincenzo Pezzi; Marcello Maggiolini
Cancer associated fibroblasts (CAFs) actively contribute to the growth and invasion of cancer cells. In recent years, the G protein estrogen receptor (GPER) has been largely involved in the estrogenic signals in diverse types of normal and tumor cells. In CAFs, GPER was localized into the nucleus, however the molecular mechanisms which regulate its nuclear shuttle remain to be clarified. In the present study, we demonstrate that in breast CAFs GPER translocates into the nucleus through an importin-dependent mechanism. Moreover, we show that a nuclear localization signal is involved in the nuclear import of GPER, in the up-regulation of its target genes c-fos and CTGF and in the migration of CAFs induced by estrogens. Our data provide novel insights into the nuclear localization and function of GPER in CAFs toward a better understanding of the estrogen action elicited through these key players of the tumor microenvironment.
Endocrine-related Cancer | 2014
Paola De Marco; Enrica Romeo; Adele Vivacqua; Roberta Malaguarnera; Sergio Abonante; Francesco Romeo; Vincenzo Pezzi; Antonino Belfiore; Marcello Maggiolini
Elevated insulin levels have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes characterized by a poor prognosis. Insulin stimulates the proliferation, migration, and invasiveness of cancer cells through diverse transduction pathways, including estrogen signaling. As G protein estrogen receptor 1 (GPER1) mediates rapid cell responses to estrogens, we evaluated the potential of insulin to regulate GPER1 expression and function in leiomyosarcoma cancer cells (SKUT-1) and breast cancer-associated fibroblasts (CAFs), which were used as a model system. We found that insulin transactivates the GPER1 promoter sequence and increases the mRNA and protein expression of GPER1 through the activation of the PRKCD/MAPK1/c-Fos/AP1 transduction pathway, as ascertained by means of specific pharmacological inhibitors and gene-silencing experiments. Moreover, cell migration triggered by insulin occurred through GPER1 and its main target gene CTGF, whereas the insulin-induced expression of GPER1 boosted cell-cycle progression and the glucose uptake stimulated by estrogens. Notably, a positive correlation between insulin serum levels and GPER1 expression was found in cancer fibroblasts obtained from breast cancer patients. Altogether, our data indicate that GPER1 may be included among the complex network of transduction signaling triggered by insulin that drives cells toward cancer progression.
Environmental Health Perspectives | 2015
Lidia Albanito; Rosamaria Lappano; Antonio Madeo; Adele Chimento; Eric R. Prossnitz; Anna Rita Cappello; Vincenza Dolce; Sergio Abonante; Vincenzo Pezzi; Marcello Maggiolini
Background: The pesticide atrazine does not bind to or activate the classical estrogen receptor (ER), but it up-regulates the aromatase activity in estrogen-sensitive tumor cells. The G protein estrogen receptor (GPR30/GPER) has been reported to be involved in certain biological responses to endogenous estrogens and environmental compounds exerting estrogen-like activity. Objectives: We aimed to evaluate the potential of atrazine to trigger GPER-mediated signaling in cancer cells and cancer-associated fibroblasts (CAFs). Methods and Results: Using gene reporter assays in diverse types of cancer cells, we found that atrazine did not transactivate endogenous ERα or chimeric proteins that encode the ERα and ERβ hormone binding domains. Conversely, atrazine was able to bind to GPER to induce ERK activation and the expression of estrogen target genes, which, interestingly, appeared to rely on both GPER and ERα expression. As a biological counterpart, atrazine stimulated the proliferation of ovarian cancer cells that depend on GPER and ERα, as evidenced by gene silencing experiments and the use of specific signaling inhibitors. Of note, through GPER, atrazine elicited ERK phosphorylation, gene expression, and migration in CAFs, thus extending its stimulatory role to these main players of the tumor microenvironment. Conclusions: Our results suggest a novel mechanism through which atrazine may exert relevant biological effects in cancer cells and CAFs. On the basis of our data, atrazine should be included among the environmental contaminants that may elicit estrogenic activity through GPER-mediated signaling. Citation: Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz ER, Capello AR, Dolce V, Abonante S, Pezzi V, Maggiolini M. 2015. Effects of atrazine on estrogen receptor α– and G protein–coupled receptor 30–mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect 123:493–499; http://dx.doi.org/10.1289/ehp.1408586
Cell Death and Disease | 2015
Maria Francesca Santolla; Silvia Avino; Michele Pellegrino; E.M. De Francesco; P. De Marco; Rosamaria Lappano; Adele Vivacqua; Francesca Cirillo; Damiano Cosimo Rigiracciolo; Andrea Scarpelli; Sergio Abonante; Marcello Maggiolini
A number of tumors exhibit an altered expression of sirtuins, including NAD+-dependent histone deacetylase silent information regulator 1 (SIRT1) that may act as a tumor suppressor or tumor promoter mainly depending on the tumor types. For instance, in breast cancer cells SIRT1 was shown to exert an essential role toward the oncogenic signaling mediated by the estrogen receptor-α (ERα). In accordance with these findings, the suppression of SIRT1 led to the inhibition of the transduction pathway triggered by ERα. As the regulation of SIRT1 has not been investigated in cancer cells lacking ER, in the present study we ascertained the expression and function of SIRT1 by estrogens in ER-negative breast cancer cells and cancer-associated fibroblasts obtained from breast cancer patients. Our results show that 17β-estradiol (E2) and the selective ligand of GPER, namely G-1, induce the expression of SIRT1 through GPER and the subsequent activation of the EGFR/ERK/c-fos/AP-1 transduction pathway. Moreover, we demonstrate that SIRT1 is involved in the pro-survival effects elicited by E2 through GPER, like the prevention of cell cycle arrest and cell death induced by the DNA damaging agent etoposide. Interestingly, the aforementioned actions of estrogens were abolished silencing GPER or SIRT1, as well as using the SIRT1 inhibitor Sirtinol. In addition, we provide evidence regarding the involvement of SIRT1 in tumor growth stimulated by GPER ligands in breast cancer cells and xenograft models. Altogether, our data suggest that SIRT1 may be included in the transduction network activated by estrogens through GPER toward the breast cancer progression.
Cellular Signalling | 2014
Maria Francesca Santolla; Ernestina Marianna De Francesco; Rosamaria Lappano; Camillo Rosano; Sergio Abonante; Marcello Maggiolini
Nicotinic acid, also known as niacin, is the water soluble vitamin B3 used for decades for the treatment of dyslipidemic diseases. Its action is mainly mediated by the G protein-coupled receptor (GPR) 109A; however, certain regulatory effects on lipid levels occur in a GPR109A-independent manner. The amide form of nicotinic acid, named nicotinamide, acts as a vitamin although neither activates the GPR109A nor exhibits the pharmacological properties of nicotinic acid. In the present study, we demonstrate for the first time that nicotinic acid and nicotinamide bind to and activate the GPER-mediated signalling in breast cancer cells and cancer-associated fibroblasts (CAFs). In particular, we show that both molecules are able to promote the up-regulation of well established GPER target genes through the EGFR/ERK transduction pathway. As a biological counterpart, nicotinic acid and nicotinamide induce proliferative and migratory effects in breast cancer cells and CAFs in a GPER-dependent fashion. Moreover, nicotinic acid prevents the up-regulation of ICAM-1 triggered by the pro-inflammatory cytokine TNF-α and stimulates the formation of endothelial tubes through GPER in HUVECs. Together, our findings concerning the agonist activity for GPER displayed by both nicotinic acid and nicotinamide broaden the mechanisms involved in the biological action of these molecules and further support the potential of a ligand to induce different responses mediated in a promiscuous manner by distinct GPCRs.
The International Journal of Biochemistry & Cell Biology | 2014
Marco Pupo; Assunta Pisano; Sergio Abonante; Marcello Maggiolini; Anna Maria Musti
The G protein-coupled receptor GPR30/GPER has been shown to mediate rapid effects of 17β-estradiol (E2) in diverse types of cancer cells. Here, we provide evidence for a novel crosstalk between GPER and the Notch signaling pathway in breast cancer cells and cancer-associated fibroblasts (CAFs). We show that E2 and the GPER selective ligand G-1 induce both the γ-secretase-dependent activation of Notch-1 and the expression of the Notch target gene Hes-1. These inductions are prevented by knocking down GPER or by using a dominant-negative mutant of the Notch transcriptional co-activator Master-mind like-1 (DN-MAML-1), hence suggesting the involvement of GPER in the Notch-dependent transcription. By performing chromatin-immunoprecipitation experiments and luciferase assays, we also demonstrate that E2 and G-1 induce the recruitment of the intracellular domain of Notch-1 (N1ICD) to the Hes-1 promoter and the transactivation of a Hes-1-reporter gene, respectively. Functionally, the E2 and G-1-induced migration of breast cancer cells and CAFs is abolished in presence of the γ-secretase inhibitor GSI or DN-MAML-1, which both inhibit the Notch signaling pathway. In addition, we demonstrate that E2 and G-1 prevent the expression of VE-Cadherin, while both compounds induce the expression of Snail, a Notch target gene acting as a repressor of cadherins expression. Notably, both GSI and DN-MAML-1 abolish the up-regulation of Snail-1 by E2 and G-1, whereas the use of GSI rescues VE-Cadherin expression. Taken together, our results prove the involvement of the Notch signaling pathway in mediating the effects of estrogenic GPER signaling in breast cancer cells and CAFs.