Sergio Angeli
Free University of Bozen-Bolzano
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio Angeli.
Agricultural and Forest Entomology | 2009
Jiafu Hu; Sergio Angeli; Stefan Schuetz; Youqing Luo; Ann E. Hajek
1 The Asian longhorned beetle is native to China and Korea, and was found for the first time outside its native habitat in the U.S.A. in 1996, with subsequent detections being made in Canada and several European countries. 2 We review the taxonomy, distribution, basic biology, behaviour, ecology and management of endemic and exotic Anoplophora glabripennis, including information that is available in the extensive Chinese literature. 3 This species has caused massive mortality of Populus species in China and models have demonstrated that it could become established in many locations worldwide. 4 Anoplophora glabripennis is polyphagous but prefers Acer, Salix and Populus, section Aigeiros. 5 Although A. glabripennis adults do not disperse far when surrounded by host trees, they have the potential to fly more than 2000 m in a season. 6 Volatile organic compounds from preferred host trees are attractive to A. glabripennis and this attraction is heightened by drought stress. Males and females orientate to a volatile released by female A. glabripennis and males attempt to copulate after contacting a sex pheromone on the female cuticle. 7 At present, A. glabripennis is being (or has been) eradicated from areas where it has been introduced. After detection, extensive surveys are conducted and, if breeding populations are detected, at the very least, infested trees are removed and destroyed. Close attention is paid to imported solid wood packaging material to prevent new introductions. 8 Standard practice to control A. glabripennis in China is to spray insecticides in tree canopies. In North America, largely as a preventative measure, systemic insecticides are injected into trees. Entomopathogenic fungi have been developed for the control of A. glabripennis, and entomopathogenic nematodes, coleopteran and hymenopteran parasitoids and predatory woodpeckers have been investigated as biocontrol agents. 9 Ecological control of A. glabripennis in China involves planting mixtures of preferred and nonpreferred tree species, and this practice can successfully prevent outbreaks.
Insect Molecular Biology | 2003
L. Ban; Andrea Scaloni; Anna Brandazza; Sergio Angeli; Zhang Ld; Y. Yan; Paolo Pelosi
Two different classes of chemosensory proteins (CSPs) in Locusta migratoria have been identified on the basis of the molecular cloning of a series of different cDNAs from the antennae of this insect. Several CSP isoforms have been purified and biochemically characterized from antennal and wing extracts, some of them corresponding to expression products predicted for the identified cDNAs. In wings, the nature of the main endogenous ligand binding to these proteins was determined as oleoamide by a gas chromatography–mass spectrometric approach. One of these isoforms has been expressed in a bacterial system with high yield and used in a fluorescent binding assay. Competitive binding experiments have indicated the presence of long‐chain compounds among the best ligands.
Archives of Insect Biochemistry and Physiology | 2000
Jean-François Picimbon; Karen Dietrich; Sergio Angeli; Andrea Scaloni; Jürgen Krieger; Heinz Breer; Paolo Pelosi
Soluble low molecular weight acidic proteins are suspected to transport stimulus molecules to the sensory neurons within insect sensilla. From the antennae of Bombyx mori, we have purified and sequenced a protein (BmorCSP1) bearing sequence similarity to a class of soluble chemosensory proteins recently discovered in several orders of insects. Based on its N-terminal sequence, the cDNA encoding this protein has been amplified and cloned. Differential screening of a B. mori antennal cDNA library led to the identification of a second gene encoding a related protein (BmorCSP2), sharing 35-40% identity to BmorCSP1 and chemosensory proteins from other species. The predicted secondary structures of moths, chemosensory proteins comprise alpha-helical foldings at conserved positions and a reduced hydrophobicity with respect to this novel family of chemosensory proteins.
Insect Biochemistry and Molecular Biology | 2000
Silvana Marchese; Sergio Angeli; Annapaola Andolfo; Andrea Scaloni; Anna Brandazza; Mario Mazza; Jean François Picimbon; Walter S. Leal; Paolo Pelosi
Three related nucleotide sequences, encoding mature proteins of 108-113 amino acids, have been obtained from antennal cDNA of the Phasmid Eurycantha calcarata. Among these, one is also expressed in the tarsi as demonstrated by N-terminal sequence and mass spectrometric analyses of protein samples isolated from both organs. PCR experiments performed with specific primers, showed that this species is also expressed in the mouth organs and in the cuticle, while the other two are antennal specific. All three isoforms are similar to Drosophila OS-D and other proteins reported in several insect orders, but one of them is significantly different from the other two. The best conserved elements are the N-terminal region and the four cysteine residues. Accurate ESMS measurements indicated that all cysteines are involved in two disulphide bonds and ruled out the occurrence of additional post-translational modifications. Polyclonal antibodies, raised against the purified protein, did not react with proteins of the same class expressed in another Phasmid species, Carausius morosus, and in the orthopteran Schistocerca gregaria, nor did antibodies against these proteins recognise those of E. calcarata.
Arthropod Structure & Development | 2002
Gaia Monteforti; Sergio Angeli; R. Petacchi; Antonio Minnocci
The aim of this work was to investigate the olfactory system of the walking stick insect, Carausius morosus. Morphological, ultrastructural and immunocytochemical studies of adult female antennae were conducted by scanning and transmission electron microscopy. Extensive cross-section series were made through the last antennal segment to define the cuticular apparatus, wall pore distribution and the number of innervating receptor neurons of each sensillum type. Single-walled wall pore sensilla occur in three subtypes: (i) with 27 or 28 branched receptor neurons, (ii) with two branched neurons and (iii) with one or two unbranched neurons, respectively. Double-walled wall pore sensilla were found in two subtypes with spoke channels, one with four unbranched neurons, the other with two unbranched neurons. One terminal pore sensillum was found, showing two cavities within the hair and being innervated by six sensory cells. Immunocytochemical experiments were performed to show the localization of a 19 kDa soluble protein found in the chemosensory organs of C. morosus. This protein shows an amino acid sequence homologous to the family of chemosensory proteins (CSP). The polyclonal antibody raised against the purified protein (CSP-cmA) showed, for the first time in CSPs, a strong labeling in olfactory sensilla, specifically in the sensillum lymph surrounding the dendritic branches of SW-WP sensilla and in the uninnervated lumen between the two concentric walls of DW-WP type 1 sensilla.
Chemical Senses | 2008
Prodpran Thakeow; Sergio Angeli; Bernhard Weißbecker; Stefan Schütz
Cis boleti (Coleoptera: Ciidae) preferentially colonizes fungi from the genus Trametes that are known as important wood decomposers. The aim of our research was to investigate if C. boleti uses the chemical volatile composition of its fungal host, Trametes gibbosa, as a key attraction factor. Therefore, the T. gibbosa fruiting body volatiles were analysed by using gas chromatography-mass spectrometry, with parallel electroantennographic detection (GC-MS/EAD) using adults of C. boleti. Furthermore, we examined the behavioral responses of C. boleti to the T. gibbosa volatile compounds. The dominant component of the T. gibbosa fruiting body bouquet was 1-octen-3-ol. Other volatiles, like the aldehydes hexanal, nonanal, and (E,E)-2,4-decadienal and the terpene alpha-bisabolol, were present in minor quantities. 1-Octen-3-ol was released with a ratio of the (R)- and (S)-enantiomers of 93:7, respectively. Electroantennography (EAG) employing C. boleti antennae yielded consistently dominant responses to 1-octen-3-ol. GC-EAD and EAG responses to pure standard compounds showed that C. boleti also perceived other host fungal volatiles. A highly significant attraction to 1-octen-3-ol was observed in behavioral tests. Female beetles were significantly attracted to the (S)-(+)- enantiomer at 10 times lower doses than male beetles. Our finding is the first direct proof that ciid beetles use 1-octen-3-ol as a key cue for host finding.
Environmental Entomology | 2015
John Abraham; Aijun Zhang; Sergio Angeli; Sitra Abubeker; Caryn Michel; Yan Feng; Cesar Rodriguez-Saona
ABSTRACT Native to Southeast Asia, the spotted wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), has become a serious pest of soft-skinned fruit crops since its introduction into North America and Europe in 2008. Current monitoring strategies use baits based on fermentation products; however, to date, no fruit-based volatile blends attractive to this fly have been identified. This is particularly important because females are able to cut into the epicarp of ripening fruit for oviposition. Thus, we conducted studies to: 1) investigate the behavioral responses of adult D. suzukii to volatiles from blueberry, cherry, raspberry, and strawberry fruit extracts; 2) identify the antennally active compounds from the most attractive among the tested extracts (raspberry) using gas chromatography (GC)—mass spectrometry and coupled gas chromatography —electroantennographic detection (GC-EAD); and 3) test a synthetic blend containing the EAD-active compounds identified from raspberry extract on adult attraction. In olfactometer studies, both female and male D. suzukii were attracted to all four fruit extracts. The attractiveness of the fruit extracts ranks as: raspberry ≥ strawberry > blueberry ≥ cherry. GC analyses showed that the fruit extracts emit distinct volatile compounds. In GC-EAD experiments, 11 raspberry extract volatiles consistently elicited antennal responses in D. suzukii. In choice test bioassays, a synthetic EAD-active blend attracted more D. suzukii than a blank control, but was not as attractive as the raspberry extract. To our knowledge, this is the first report of a behaviorally and antennally active blend of host fruit volatiles attractive to D. suzukii, offering promising opportunities for the development of improved monitoring and behaviourally based management tools.
BMC Genomics | 2014
Stefan Dippel; Georg Oberhofer; Jörg Kahnt; Lizzy Gerischer; Lennart Opitz; Joachim Schachtner; Mario Stanke; Stefan Schütz; Ernst A. Wimmer; Sergio Angeli
BackgroundChemoreception is based on the senses of smell and taste that are crucial for animals to find new food sources, shelter, and mates. The initial step in olfaction involves the translocation of odorants from the periphery through the aqueous lymph of the olfactory sensilla to the odorant receptors most likely by chemosensory proteins (CSPs) or odorant binding proteins (OBPs).ResultsTo better understand the roles of CSPs and OBPs in a coleopteran pest species, the red flour beetle Tribolium castaneum (Coleoptera, Tenebrionidae), we performed transcriptome analyses of male and female antennae, heads, mouthparts, legs, and bodies, which revealed that all 20 CSPs and 49 of the 50 previously annotated OBPs are transcribed. Only six of the 20 CSP are significantly transcriptionally enriched in the main chemosensory tissues (antenna and/or mouthparts), whereas of the OBPs all eight members of the antenna binding proteins II (ABPII) subgroup, 18 of the 20 classic OBP subgroup, the C + OBP, and only five of the 21 C-OBPs show increased chemosensory tissue expression. By MALDI-TOF-TOF MS protein fingerprinting, we confirmed three CSPs, four ABPIIs, three classic OBPs, and four C-OBPs in the antennae.ConclusionsMost of the classic OBPs and all ABPIIs are likely involved in chemoreception. A few are also present in other tissues such as odoriferous glands and testes and may be involved in release or transfer of chemical signals. The majority of the CSPs as well as the C-OBPs are not enriched in antennae or mouthparts, suggesting a more general role in the transport of hydrophobic molecules.
FEBS Letters | 2004
Anna Brandazza; Sergio Angeli; Mariella Tegoni; Christian Cambillau; Paolo Pelosi
Thaumatin‐like proteins (TLPs) are polypeptides of about 200 residues synthesized by plants in response to fungal infection. In addition to the exceptionally strong sweet taste exhibited by some members, they are also reported to be endowed with endo‐β‐1,3‐glucanase activity and α‐amylase inhibiting properties. However, the detailed mechanism of their antifungal action is not completely understood. So far, TLPs have only been described in plants, with several members of the family expressed in the same species. Here, for the first time in animals, we report the identification of two genes encoding members of the thaumatin‐like proteins family in the desert locust Schistocerca gregaria and show their expression in different parts of the body. Southern blot and Western blot experiments revealed the presence of orthologous genes and their expression products in the related species Locusta migratoria. A search through the available genomes yielded similar sequences in the nematode Caenorhabditis but not in Drosophila and other insects. A three‐dimensional model of S. gregaria TLP suggests a glucanase function. As in plants, TLPs could play a defense role in insects against pathogens.
Physiological Entomology | 2015
Santosh Revadi; Silvia Vitagliano; Marco Valerio Rossi Stacconi; Sukanya Ramasamy; Suzan Mansourian; Silvia Carlin; Urska Vrhovsek; Paul G. Becher; V. Mazzoni; Omar Rota-Stabelli; Sergio Angeli; Teun Dekker; Gianfranco Anfora
Drosophila suzukii Matsumura, an endemic pest in southeast Asia, has invaded Europe and the U.S.A. Unlike most of its closely related sibling species, the serrated ovipositor of D. suzukii permits ovipositing in undamaged fresh fruits. In the present study, volatiles are identified from host plants that are potentially involved in D. suzukii host recognition and oviposition behaviour. It is shown that mated females are attracted to volatiles emitted from intact fruits. The antennally‐active suite of compounds released from the fresh fruits is identified by gas chromatography coupled with electroantennographic detection, as well as gas chromatography‐mass spectrometry. In olfactometer bioassays, mated females are significantly attracted to an electroantennographically active volatile, isoamyl acetate, when tested at 10 µg of synthetic compound in a rubber septa, which has a release rate comparable to that of fresh fruits. In addition, a genomic survey shows that D. suzukii not only possesses the full repertoire of genes encoding odorant receptors activated by isoamyl acetate in D. melanogaster, but also that one of the genes, OR67a, is represented by five duplicated copies. These results indicate that D. suzukii uses olfactory cues to select oviposition sites. The identification of volatiles emitted by host fruits that attract D. suzukii may aid in the development of a selective and efficient synthetic lure for monitoring this pest. As a close relative of Drosophila melanogaster, D. suzukii provides a unique opportunity for understanding the physiological mechanisms involved in the shift of this species from use of rotten to ripe fruits for oviposition.