Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergio Casas-Tinto is active.

Publication


Featured researches published by Sergio Casas-Tinto.


Human Molecular Genetics | 2011

The ER stress factor XBP1s prevents amyloid-β neurotoxicity

Sergio Casas-Tinto; Yan Zhang; Jonatan Sanchez-Garcia; Melisa Gomez-Velazquez; Diego E. Rincon-Limas; Pedro Fernandez-Funez

Alzheimers disease (AD) is an incurable neurodegenerative disorder clinically characterized by progressive cognitive impairment. A prominent pathologic hallmark in the AD brain is the abnormal accumulation of the amyloid-β 1-42 peptide (Aβ), but the exact pathways mediating Aβ neurotoxicity remain enigmatic. Endoplasmic reticulum (ER) stress is induced during AD, and has been indirectly implicated as a mediator of Aβ neurotoxicity. We report here that Aβ activates the ER stress response factor X-box binding protein 1 (XBP1) in transgenic flies and in mammalian cultured neurons, yielding its active form, the transcription factor XBP1s. XBP1s shows neuroprotective activity in two different AD models, flies expressing Aβ and mammalian cultured neurons treated with Aβ oligomers. Trying to identify the mechanisms mediating XBP1s neuroprotection, we found that in PC12 cells treated with Aβ oligomers, XBP1s prevents the accumulation of free calcium (Ca(2+)) in the cytosol. This protective activity can be mediated by the downregulation of a specific isoform of the ryanodine Ca(2+) channel, RyR3. In support of this observation, a mutation in the only ryanodine receptor (RyR) in flies also suppresses Aβ neurotoxicity, indicating the conserved mechanisms between the two AD models. These results underscore the functional relevance of XBP1s in Aβ toxicity, and uncover the potential of XBP1 and RyR as targets for AD therapeutics.


PLOS Genetics | 2009

In vivo generation of neurotoxic prion protein: role for hsp70 in accumulation of misfolded isoforms.

Pedro Fernandez-Funez; Sergio Casas-Tinto; Yan Zhang; Melisa Gomez-Velazquez; Marco A. Morales-Garza; Ana C. Cepeda-Nieto; Joaquín Castilla; Claudio Soto; Diego E. Rincon-Limas

Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders.


Journal of Biological Chemistry | 2010

Sequence-dependent prion protein misfolding and neurotoxicity.

Pedro Fernandez-Funez; Yan Zhang; Sergio Casas-Tinto; Xiangzhu Xiao; Wen Quan Zou; Diego E. Rincon-Limas

Prion diseases are neurodegenerative disorders caused by misfolding of the normal prion protein (PrP) into a pathogenic “scrapie” conformation. To better understand the cellular and molecular mechanisms that govern the conformational changes (conversion) of PrP, we compared the dynamics of PrP from mammals susceptible (hamster and mouse) and resistant (rabbit) to prion diseases in transgenic flies. We recently showed that hamster PrP induces spongiform degeneration and accumulates into highly aggregated, scrapie-like conformers in transgenic flies. We show now that rabbit PrP does not induce spongiform degeneration and does not convert into scrapie-like conformers. Surprisingly, mouse PrP induces weak neurodegeneration and accumulates small amounts of scrapie-like conformers. Thus, the expression of three highly conserved mammalian prion proteins in transgenic flies uncovered prominent differences in their conformational dynamics. How these properties are encoded in the amino acid sequence remains to be elucidated.


PLOS Biology | 2016

Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation

Rubén Hervás; Liying Li; Amitabha Majumdar; María del Carmen Fernández-Ramírez; Jay R. Unruh; Brian D. Slaughter; Albert Galera-Prat; Elena Santana; Mari Suzuki; Yoshitaka Nagai; Marta Bruix; Sergio Casas-Tinto; Margarita Menéndez; Douglas V. Laurents; Kausik Si; Mariano Carrión-Vázquez

Amyloids are ordered protein aggregates that are typically associated with neurodegenerative diseases and cognitive impairment. By contrast, the amyloid-like state of the neuronal RNA binding protein Orb2 in Drosophila was recently implicated in memory consolidation, but it remains unclear what features of this functional amyloid-like protein give rise to such diametrically opposed behaviour. Here, using an array of biophysical, cell biological and behavioural assays we have characterized the structural features of Orb2 from the monomer to the amyloid state. Surprisingly, we find that Orb2 shares many structural traits with pathological amyloids, including the intermediate toxic oligomeric species, which can be sequestered in vivo in hetero-oligomers by pathological amyloids. However, unlike pathological amyloids, Orb2 rapidly forms amyloids and its toxic intermediates are extremely transient, indicating that kinetic parameters differentiate this functional amyloid from pathological amyloids. We also observed that a well-known anti-amyloidogenic peptide interferes with long-term memory in Drosophila. These results provide structural insights into how the amyloid-like state of the Orb2 protein can stabilize memory and be nontoxic. They also provide insight into how amyloid-based diseases may affect memory processes.


European Journal of Neuroscience | 2014

Cell types and coincident synapses in the ellipsoid body of Drosophila

Alfonso Martín-Peña; Angel Acebes; José-Rodrigo Rodríguez; Valérie Chevalier; Sergio Casas-Tinto; Tilman Triphan; Roland Strauss; Alberto Ferrús

Cellular ultrastructures for signal integration are unknown in any nervous system. The ellipsoid body (EB) of the Drosophila brain is thought to control locomotion upon integration of various modalities of sensory signals with the animal internal status. However, the expected excitatory and inhibitory input convergence that virtually all brain centres exhibit is not yet described in the EB. Based on the EB expression domains of genetic constructs from the choline acetyl transferase (Cha), glutamic acid decarboxylase (GAD) and tyrosine hydroxylase (TH) genes, we identified a new set of neurons with the characteristic ring‐shaped morphology (R neurons) which are presumably cholinergic, in addition to the existing GABA‐expressing neurons. The R1 morphological subtype is represented in the Cha‐ and TH‐expressing classes. In addition, using transmission electron microscopy, we identified a novel type of synapse in the EB, which exhibits the precise array of two independent active zones over the same postsynaptic dendritic domain, that we named ‘agora’. This array is compatible with a coincidence detector role, and represents ~8% of all EB synapses in Drosophila. Presumably excitatory R neurons contribute to coincident synapses. Functional silencing of EB neurons by driving genetically tetanus toxin expression either reduces walking speed or alters movement orientation depending on the targeted R neuron subset, thus revealing functional specialisations in the EB for locomotion control.


Mechanisms of Development | 2002

DmFoxF, a novel Drosophila fork head factor expressed in visceral mesoderm

Cristina Sánchez; Sergio Casas-Tinto; Lucas Sánchez; Javier Rey-Campos; Begoña Granadino

DmFoxF is a novel Drosophila fork head domain factor, which is expressed in the visceral mesoderm of the embryo. Our data suggest that DmFoxF is the fly orthologue of the vertebrates FOXF1 and FOXF2 transcription factors. DmFoxF shares homology with FOXF1 and FOXF2 in its fork head domain, and it is able to specifically bind DNA sequences recognized by these vertebrate fork head factors. In stage 10-11 embryos, the DmFoxF protein is detected into the nuclei of cells of the presumptive visceral mesoderm. It localizes at the segmental cell clusters of the mesoderm, which will eventually develop to surround the midgut endoderm. DmFoxF is also expressed in the proctodeal mesoderm, which will develop into the visceral mesoderm of the hindgut.


Prion | 2010

Exploring prion protein biology in flies: genetics and beyond.

Diego E. Rincon-Limas; Sergio Casas-Tinto; Pedro Fernandez-Funez

The fruit fly Drosophila melanogaster has been a favored tool for genetic studies for over 100 years and has become an excellent model system to study development, signal transduction, cell biology, immunity, and behavior. The relevance of Drosophila to humans is perhaps best illustrated by the fact that more than 75% of the genes identified in human diseases have counterparts in Drosophila. During the last decade, many fly models of neurodegenerative disorders have contributed to the identification of novel pathways mediating pathogenesis. However, the development of prion disease models in flies has been remarkably challenging. We recently reported a Drosophila model of sporadic prion pathology that shares relevant features with the typical disease in mammals. This new model provides the basis to explore relevant aspects of the biology of the prion protein, such as uncovering the genetic mechanisms regulating prion protein misfolding and prion-induced neurodegeneration, in a dynamic, genetically tractable in vivo system.


Nature Communications | 2015

Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition

Sergio Casas-Tinto; Fidel-Nicolás Lolo; Eduardo Moreno

Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue.


Journal of Cell Biology | 2008

FoxK mediates TGF-β signalling during midgut differentiation in flies

Sergio Casas-Tinto; Melisa Gomez-Velazquez; Begoña Granadino; Pedro Fernandez-Funez

Inductive signals across germ layers are important for the development of the endoderm in vertebrates and invertebrates (Tam, P.P., M. Kanai-Azuma, and Y. Kanai. 2003. Curr. Opin. Genet. Dev. 13:393–400; Nakagoshi, H. 2005. Dev. Growth Differ. 47:383–392). In flies, the visceral mesoderm secretes signaling molecules that diffuse into the underlying midgut endoderm, where conserved signaling cascades activate the Hox gene labial, which is important for the differentiation of copper cells (Bienz, M. 1997. Curr. Opin. Genet. Dev. 7:683–688). We present here a Drosophila melanogaster gene of the Fox family of transcription factors, FoxK, that mediates transforming growth factor β (TGF-β) signaling in the embryonic midgut endoderm. FoxK mutant embryos fail to generate midgut constrictions and lack Labial in the endoderm. Our observations suggest that TGF-β signaling directly regulates FoxK through functional Smad/Mad-binding sites, whereas FoxK, in turn, regulates labial expression. We also describe a new cooperative activity of the transcription factors FoxK and Dfos/AP-1 that regulates labial expression in the midgut endoderm. This regulatory activity does not require direct labial activation by the TGF-β effector Mad. Thus, we propose that the combined activity of the TGF-β target genes FoxK and Dfos is critical for the direct activation of lab in the endoderm.


Clinical & Translational Oncology | 2011

The flower code and cancer development.

Sergio Casas-Tinto; Miguel Torres; Eduardo Moreno

It has been postulated that the preliminary steps of cancer known as “cancerization field” could be mediated by a competitive mechanism among mutated and wild-type cells. Cell competition is a process of selection among populations of cells with different fitness: the best adapted cells (winners) survive and proliferate in the tissue at the expense of the less well adapted cells (losers), and these loser cells are eliminated from the tissue by apoptosis. However, the molecular mechanisms mediating this process and the genes involved are still unknown. A mechanism of cell-to-cell communication during cell competition known as the “flower code” has been recently proposed to distinguish loser from winner cells: fweubi isoform is expressed ubiquitously in the imaginal disc while fweLose isoforms are expressed specifically during cell competition in the cells to be eliminated. Cell competition has been postulated to have implications in development, tissue homeostasis, regeneration and tumour development; the process of cell competition does not affect the total cell number and organ morphology is maintained because winner cells compensate for the loss. A role of cell competition as the mechanism occurring during initial stages of tumour formation is currently under study.

Collaboration


Dive into the Sergio Casas-Tinto's collaboration.

Top Co-Authors

Avatar

Alberto Ferrús

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Zhang

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Elena Santana

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fidel-Nicolás Lolo

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Melisa Gomez-Velazquez

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Angel Acebes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Begoña Granadino

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge