Sergio Chiandotto
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio Chiandotto.
European Heart Journal | 2015
Francesco Paneni; Sarah Costantino; Lorenzo Castello; Rodolfo Battista; Giuliana Capretti; Sergio Chiandotto; Domenico D'Amario; Giuseppe Scavone; Angelo Villano; Alessandra Rustighi; Filippo Crea; Dario Pitocco; Gaetano Antonio Lanza; Massimo Volpe; Giannino De Sal; Thomas F. Lüscher; Francesco Cosentino
AIM Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease. METHODS AND RESULTS In human aortic endothelial cells (HAECs) exposed to high glucose, up-regulation of Pin1-induced mitochondrial translocation of pro-oxidant adaptor p66(Shc) and subsequent organelle disruption. In this setting, Pin1 recognizes Ser-116 inhibitory phosphorylation of endothelial nitric oxide synthase (eNOS) leading to eNOS-caveolin-1 interaction and reduced NO availability. Pin1 also mediates hyperglycaemia-induced nuclear translocation of NF-κB p65, triggering VCAM-1, ICAM-1, and MCP-1 expression. Indeed, gene silencing of Pin1 in HAECs suppressed p66(Shc)-dependent ROS production, restored NO release and blunted NF-kB p65 nuclear translocation. Consistently, diabetic Pin1(-/-) mice were protected against mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Increased expression and activity of Pin1 were also found in peripheral blood monocytes isolated from diabetic patients when compared with age-matched healthy controls. Interestingly, enough, Pin1 up-regulation was associated with impaired flow-mediated dilation, increased urinary 8-iso-prostaglandin F2α and plasma levels of adhesion molecules. CONCLUSIONS Pin1 drives diabetic vascular disease by causing mitochondrial oxidative stress, eNOS dysregulation as well as NF-kB-induced inflammation. These findings provide molecular insights for novel mechanism-based therapeutic strategies in patients with diabetes.
Diabetes | 2017
Sarah Costantino; Francesco Paneni; Rodolfo Battista; Lorenzo Castello; Giuliana Capretti; Sergio Chiandotto; Luigi Tanese; Giulio Russo; Dario Pitocco; Gaetano Antonio Lanza; Massimo Volpe; Thomas F. Lüscher; Francesco Cosentino
Intensive glycemic control (IGC) targeting HbA1c fails to show an unequivocal reduction of macrovascular complications in type 2 diabetes (T2D); however, the underlying mechanisms remain elusive. Epigenetic changes are emerging as important mediators of cardiovascular damage and may play a role in this setting. This study investigated whether epigenetic regulation of the adaptor protein p66Shc, a key driver of mitochondrial oxidative stress, contributes to persistent vascular dysfunction in patients with T2D despite IGC. Thirty-nine patients with uncontrolled T2D (HbA1c >7.5%) and 24 age- and sex-matched healthy control subjects were consecutively enrolled. IGC was implemented for 6 months in patients with T2D to achieve a target HbA1c of ≤7.0%. Brachial artery flow-mediated dilation (FMD), urinary 8-isoprostaglandin F2α (8-isoPGF2α), and epigenetic regulation of p66Shc were assessed at baseline and follow-up. Continuous glucose monitoring was performed to determine the mean amplitude of glycemic excursion (MAGE) and postprandial incremental area under the curve (AUCpp). At baseline, patients with T2D showed impaired FMD, increased urinary 8-isoPGF2α, and p66Shc upregulation in circulating monocytes compared with control subjects. FMD, 8-isoPGF2α, and p66Shc expression were not affected by IGC. DNA hypomethylation and histone 3 acetylation were found on the p66Shc promoter of patients with T2D, and IGC did not change such adverse epigenetic remodeling. Persistent downregulation of methyltransferase DNMT3b and deacetylase SIRT1 may explain the observed p66Shc-related epigenetic changes. MAGE and AUCpp but not HbA1c were independently associated with the altered epigenetic profile on the p66Shc promoter. Hence, glucose fluctuations contribute to chromatin remodeling and may explain persistent vascular dysfunction in patients with T2D with target HbA1c levels.
Diabetes | 2017
Sarah Costantino; Francesco Paneni; Rodolfo Battista; Lorenzo Castello; Giuliana Capretti; Sergio Chiandotto; Luigi Tanese; Giulio Russo; Dario Pitocco; Gaetano Antonio Lanza; Massimo Volpe; Thomas F. Lüscher; Francesco Cosentino
Intensive glycemic control (IGC) targeting HbA1c fails to show an unequivocal reduction of macrovascular complications in type 2 diabetes (T2D); however, the underlying mechanisms remain elusive. Epigenetic changes are emerging as important mediators of cardiovascular damage and may play a role in this setting. This study investigated whether epigenetic regulation of the adaptor protein p66Shc, a key driver of mitochondrial oxidative stress, contributes to persistent vascular dysfunction in patients with T2D despite IGC. Thirty-nine patients with uncontrolled T2D (HbA1c >7.5%) and 24 age- and sex-matched healthy control subjects were consecutively enrolled. IGC was implemented for 6 months in patients with T2D to achieve a target HbA1c of ≤7.0%. Brachial artery flow-mediated dilation (FMD), urinary 8-isoprostaglandin F2α (8-isoPGF2α), and epigenetic regulation of p66Shc were assessed at baseline and follow-up. Continuous glucose monitoring was performed to determine the mean amplitude of glycemic excursion (MAGE) and postprandial incremental area under the curve (AUCpp). At baseline, patients with T2D showed impaired FMD, increased urinary 8-isoPGF2α, and p66Shc upregulation in circulating monocytes compared with control subjects. FMD, 8-isoPGF2α, and p66Shc expression were not affected by IGC. DNA hypomethylation and histone 3 acetylation were found on the p66Shc promoter of patients with T2D, and IGC did not change such adverse epigenetic remodeling. Persistent downregulation of methyltransferase DNMT3b and deacetylase SIRT1 may explain the observed p66Shc-related epigenetic changes. MAGE and AUCpp but not HbA1c were independently associated with the altered epigenetic profile on the p66Shc promoter. Hence, glucose fluctuations contribute to chromatin remodeling and may explain persistent vascular dysfunction in patients with T2D with target HbA1c levels.
Journal of Cachexia, Sarcopenia and Muscle | 2017
Francesca Molinari; Fabrizio Pin; Stefania Gorini; Sergio Chiandotto; Laura Pontecorvo; Fabio Penna; Emanuele Rizzuto; Simona Pisu; Antonio Musarò; Paola Costelli; Giuseppe Rosano; Elisabetta Ferraro
Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure optimal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency. Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract skeletal muscle dysfunctions and wasting occurring in cancer cachexia.
European Heart Journal | 2017
Sarah Costantino; Francesco Paneni; Agostino Virdis; Shafaat Hussain; Shafeeq Ahmed Mohammed; Giuliana Capretti; Alexander Akhmedov; Kevin Dalgaard; Sergio Chiandotto; J. Andrew Pospisilik; Thomas Jenuwein; Marco Giorgio; Massimo Volpe; Stefano Taddei; Thomas F. Lüscher; Francesco Cosentino
Aims Accumulation of reactive oxygen species (ROS) promotes vascular disease in obesity, but the underlying molecular mechanisms remain poorly understood. The adaptor p66Shc is emerging as a key molecule responsible for ROS generation and vascular damage. This study investigates whether epigenetic regulation of p66Shc contributes to obesity-related vascular disease. Methods and results ROS-driven endothelial dysfunction was observed in visceral fat arteries (VFAs) isolated from obese subjects when compared with normal weight controls. Gene profiling of chromatin-modifying enzymes in VFA revealed a significant dysregulation of methyltransferase SUV39H1 (fold change, -6.9, P < 0.01), demethylase JMJD2C (fold change, 3.2, P < 0.01), and acetyltransferase SRC-1 (fold change, 5.8, P < 0.01) in obese vs. control VFA. These changes were associated with reduced di-(H3K9me2) and trimethylation (H3K9me3) as well as acetylation (H3K9ac) of histone 3 lysine 9 (H3K9) on p66Shc promoter. Reprogramming SUV39H1, JMJD2C, and SRC-1 in isolated endothelial cells as well as in aortas from obese mice (LepOb/Ob) suppressed p66Shc-derived ROS, restored nitric oxide levels, and rescued endothelial dysfunction. Consistently, in vivo editing of chromatin remodellers blunted obesity-related vascular p66Shc expression. We show that SUV39H1 is the upstream effector orchestrating JMJD2C/SRC-1 recruitment to p66Shc promoter. Indeed, SUV39H1 overexpression in obese mice erased H3K9-related changes on p66Shc promoter, while SUV39H1 genetic deletion in lean mice recapitulated obesity-induced H3K9 remodelling and p66Shc transcription. Conclusion These results uncover a novel epigenetic mechanism underlying endothelial dysfunction in obesity. Targeting SUV39H1 may attenuate oxidative transcriptional programmes and thus prevent vascular disease in obese individuals.
Oncotarget | 2017
Lucia Gatta; Laura Vitiello; Stefania Gorini; Sergio Chiandotto; Paola Costelli; Anna Maria Giammarioli; Walter Malorni; Giuseppe Rosano; Elisabetta Ferraro
Trimetazidine (TMZ) is a metabolic reprogramming agent able to partially inhibit mitochondrial free fatty acid β-oxidation while enhancing glucose oxidation. Here we have found that the metabolic shift driven by TMZ enhances the myogenic potential of skeletal muscle progenitor cells leading to MyoD, Myogenin, Desmin and the slow isoforms of troponin C and I over-expression. Moreover, similarly to exercise, TMZ stimulates the phosphorylation of the AMP-activated protein kinase (AMPK) and up-regulates the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), both of which are known to enhance the mitochondrial biogenesis necessary for myoblast differentiation. TMZ also induces autophagy which is required during myoblast differentiation and promotes myoblast alignment which allows cell fusion and myofiber formation. Finally, we found that intraperitoneally administered TMZ (5mg/kg) is able to stimulate myogenesis in vivo both in a mice model of cancer cachexia (C26 mice) and upon cardiotoxin damage. Collectively, our work demonstrates that TMZ enhances myoblast differentiation and promotes myogenesis, which might contribute recovering stem cell blunted regenerative capacity and counteracting muscle wasting, thanks to the formation of new myofibers; TMZ is already in use in humans as an anti-anginal drug and its repositioning might impact significantly on aging and regeneration-impaired disorders, including cancer cachexia, as well as have implications in regenerative medicine.
Antioxidants & Redox Signaling | 2014
Elisabetta Ferraro; Anna Maria Giammarioli; Sergio Chiandotto; Ilaria Spoletini; Giuseppe Rosano
European Heart Journal | 2013
Francesco Paneni; Giuliana Capretti; Sarah Costantino; Sergio Chiandotto; Alexander Akhmedov; E. Di Stasio; Bianca Rocca; Thomas F. Lüscher; Massimo Volpe; Francesco Cosentino
European Heart Journal | 2013
Francesco Paneni; Sarah Costantino; Lorenzo Castello; Rodolfo Battista; Giuliana Capretti; Sergio Chiandotto; Thomas F. Lüscher; Gaetano Antonio Lanza; Massimo Volpe; Francesco Cosentino
European Heart Journal | 2013
Sarah Costantino; Francesco Paneni; Rodolfo Battista; Lorenzo Castello; Giuliana Capretti; Sergio Chiandotto; Massimo Volpe; Thomas F. Lüscher; Francesco Cosentino