Sergio Contreras
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio Contreras.
PLOS ONE | 2011
Tim Kalvelage; Marlene Mark Jensen; Sergio Contreras; Niels Peter Revsbech; Phyllis Lam; Marcel Günter; Julie LaRoche; Gaute Lavik; Marcel M. M. Kuypers
Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ∼0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3 − reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ∼20 µmol L−1. In contrast, NH3 oxidation to NO2 − and NO3 − reduction to NO2 − as the main NH4 + and NO2 − sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3 − reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3 − reduction. With anammox bacteria in the marine environment being active at O2 levels ∼20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.
Paleoceanography | 2012
Rebecca S. Robinson; Markus Kienast; Ana Luiza Spadano Albuquerque; Mark A. Altabet; Sergio Contreras; Ricardo De Pol Holz; Nathalie Dubois; Roger Francois; Eric D. Galbraith; Ting-Chang Hsu; T. S. Ivanochko; Samuel L. Jaccard; Shuh-Ji Kao; Thorsten Kiefer; Stephanie S. Kienast; Moritz F. Lehmann; Philippe Martinez; Matthew D. McCarthy; Jürgen Möbius; Tom F. Pedersen; Tracy M. Quan; Evgeniya Ryabenko; Andreas Schmittner; Ralph R. Schneider; Aya Schneider-Mor; Masahito Shigemitsu; Daniel J. Sinclair; Christopher J. Somes; Anja S Studer; Robert C. Thunell
Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle.
PLOS ONE | 2013
Harald Schunck; Gaute Lavik; Dhwani K. Desai; Tobias Großkopf; Tim Kalvelage; Carolin Löscher; Aurélien Paulmier; Sergio Contreras; Herbert Siegel; Moritz Holtappels; Philip Rosenstiel; Markus Schilhabel; Michelle Graco; Ruth A. Schmitz; Marcel M. M. Kuypers; Julie LaRoche
In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ∼2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Benjamin Brunner; Sergio Contreras; Moritz F. Lehmann; Olga Matantseva; Mark Rollog; Tim Kalvelage; G. Klockgether; Gaute Lavik; Mike S. M. Jetten; Boran Kartal; Marcel M. M. Kuypers
Significance Nitrogen is essential for all organisms and limits primary production in the ocean. It is mainly lost from low-oxygen environments by the activity of microorganisms that convert fixed nitrogen to N2 gas. The isotopic composition of nitrogen species can be used to assess nitrogen sinks in the environment, but its use in biogeochemical studies can be fully exploited only if the isotope discrimination that is associated with the respective nitrogen-converting pathways is known. This study reveals the wide range of nitrogen isotope effects of anaerobic oxidation of ammonium (anammox), a major player in marine fixed nitrogen loss, reconciling experimental data with nitrogen isotope signatures observed in the ocean. Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones.
Paleoceanography | 2010
Daniel Rincón-Martínez; Frank Lamy; Sergio Contreras; Guillaume Leduc; Edouard Bard; Cornelia Saukel; Thomas Blanz; Andreas Mackensen; Ralf Tiedemann
[1] Studying past changes in the eastern equatorial Pacific Ocean dynamics and their impact on precipitation on land gives us insight into how the Intertropical Convergence Zone (ITCZ) movements and the El Nino‐Southern Oscillation modulate regional and global climate. In this study we present a multiproxy record of terrigenous input from marine sediments collected off the Ecuadorian coast spanning the last 500 kyr. In parallel we estimate sea surface temperatures (SST) derived from alkenone paleothermometry for the sediments off the Ecuadorian coast and complement them with alkenone‐based SST data from the Panama Basin to the north in order to investigate SST gradients across the equatorial front. Near the equator, today’s river runoff is tightly linked to SST, reaching its maximum either during the austral summer when the ITCZ migrates southward or during El Nino events. Our multiproxy reconstruction of riverine runoff indicates that interglacial periods experienced more humid conditions than the glacial periods. The north‐south SST gradient is systematically steeper during glacial times, suggesting a mean background climatic state with a vigorous oceanic cold tongue, resembling modern La Nina conditions. This enhanced north‐south SST gradient would also imply a glacial northward shift of the Intertropical Convergence Zone at least in vicinity of the cold tongue: a pattern that has not yet been reproduced in climate models.
Science of The Total Environment | 2018
Sergio Contreras; Josef P. Werne; Alberto Araneda; Roberto Urrutia; C.A. Conejero
Paleolimnological studies in western South America, where meteorological stations are scarce, are critical to obtain more realistic and reliable regional reconstructions of past climate and environmental changes, including vegetation and water budget variability. However, climate and environmental geochemical indicators must be tested before they can be applied with confidence. Here we present a survey of lacustrine surface sediment (core top, 0 to ~1cm) biogeochemical proxies (total organic carbon [TOC], total nitrogen [TN], carbon/nitrogen ratio [C/N ratio] and bulk organic δ13C and total δ15N) from a suite of 72 lakes spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, and conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest further south. Sedimentary data are compared to the latitudinal and orographic climatic trends of the region based on the climatology (precipitation and temperature) produced with Climate Forecast System Reanalysis (CFSR) data and the modern Southern Hemisphere Westerly Winds (SWW) location. The geochemical data show inflection points at ~42°S latitude and ~1500m elevation that are likely related to the northern limit of influence of the SWW and elevation of the snow line, respectively. Overall the organic proxies were able to mimic climatic trends (Mean Annual Precipitation [MAP] and temperature [MAT]), indicating that they are a useful tool to be included in paleoclimatological reconstruction of the region.
Nature Geoscience | 2013
Tim Kalvelage; Gaute Lavik; Phyllis Lam; Sergio Contreras; Lionel Arteaga; Carolin Löscher; Andreas Oschlies; Aurélien Paulmier; Lothar Stramma; Marcel M. M. Kuypers
Estuarine Coastal and Shelf Science | 2005
Julio Sepúlveda; Silvio Pantoja; Konrad A. Hughen; Carina B. Lange; Fidelina González; Praxedes Munoz; Lorena Rebolledo; Rodrigo Pulgar Castro; Sergio Contreras; Alejandro Avila; Pamela Rossel; Gisella Lorca; Marco Salamanca; Nelson Silva
Geophysical Research Letters | 2010
Sergio Contreras; Carina B. Lange; Silvio Pantoja; Gaute Lavik; Daniel Rincón-Martínez; Marcel M. M. Kuypers
Progress in Oceanography | 2007
Sergio Contreras; Silvio Pantoja; Carlos Neira; Carina B. Lange