Sergio D'Orsi
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio D'Orsi.
Applied Optics | 2010
Pietro Schipani; Sergio D'Orsi; Luigi Ferragina; Davide Fierro; L. Marty; C. Molfese; F. Perrotta
The Very Large Telescope Survey Telescope (VST) is equipped with an active optics system in order to correct low-order aberrations. The 2.6 m primary mirror is supported both axially and laterally and is surrounded by several safety devices for earthquake protection. We describe the mirror support system and discuss the results of the qualification test campaign.
Applied Optics | 2010
Pietro Schipani; Sergio D'Orsi; Davide Fierro; L. Marty
In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope.
Proceedings of SPIE | 2010
Pietro Schipani; M. Capaccioli; Sergio D'Orsi; Luigi Ferragina; L. Marty; C. Molfese; F. Perrotta; Giacinto De Paris; Davide Fierro; Raffaele Tomelleri; Pierfrancesco Rossettini; Francesco Perina; Stefano Recchia; Demetrio Magrin
The 2.6-m primary mirror of the VST telescope is equipped with an active optics system in order to correct low-order aberrations, constantly monitoring the optical quality of the image and controlling the relative position and the shape of the optical elements. Periodically an image analyser calculates the deviation of the image from the best quality. VST is equipped with both a Shack-Hartmann in the probe system and a curvature sensor embedded in the OmegaCAM instrument. The telescope control software decomposes the deviation into single optical contributions and calculates the force correction that each active element has to perform to achieve the optimal quality. The set of correction forces, one for each axial actuator, is computed by the telescope central computer and transmitted to the local control unit of the primary mirror system for execution. The most important element of the VST active optics is the primary mirror, with its active support system located within the primary mirror cell structure. The primary mirror support system is composed by an axial and a lateral independent systems and includes an earthquake safety system. The system is described and the results of the qualification test campaign are discussed.
arXiv: Instrumentation and Methods for Astrophysics | 2018
R. U. Claudi; Matteo Aliverti; Federico Biondi; Matteo Munari; Ricardo Zánmar Sánchez; Sergio Campana; Pietro Schipani; Andrea Baruffolo; Sagi Ben-Ami; Anna Brucalassi; Giulio Capasso; Rosario Cosentino; Francesco D'Alessio; Paolo D'Avanzo; Oz Diner; Hanindyo Kuncarayakti; Adam Rubin; Salvatore Scuderi; Fabrizio Vitali; Jani Achrén; José Antonio Araiza-Durán; Iair Arcavi; Andrea Bianco; E. Cappellaro; Mirko Colapietro; Massimo Della Valle; Sergio D'Orsi; D. Fantinel; Johan Peter Uldall Fynbo; Avishay Gal-Yam
Son of X-Shooter (SOXS) will be a high-efficiency spectrograph with a mean Resolution-Slit product of 4500 (goal 5000) over the entire band capable of simultaneously observing the complete spectral range 350-2000 nm. It consists of three scientific arms (the UV-VIS Spectrograph, the NIR Spectrograph and the Acquisition Camera) connected by the Common Path system to the NTT and the Calibration Unit. The Common Path is the backbone of the instrument and the interface to the NTT Nasmyth focus flange. The light coming from the focus of the telescope is split by the common path optics into the two different optical paths in order to feed the two spectrographs and the acquisition camera. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the Common Path system and is accompanied by a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.
Proceedings of SPIE | 2010
Pietro Schipani; L. Marty; F. Perrotta; Demetrio Magrin; Sergio D'Orsi
The most important element of the VST active optics is the primary mirror, with its active support system located within the primary mirror cell structure. The primary mirror support system is composed by an axial and a lateral independent systems and includes an earthquake safety system. The primary mirror system software has been designed with a system engineering approach. The software has to change the mirror shape during observations, but also shall allow the user to perform a number of other activities. It has to support: periodic maintenance operations like the alignment, the mirror removal and installation for recoating; the functional tests; the engineering operations; the recalibration of several parameters. This paper describes how the primary mirror system software has been developed to support both the observations and engineering activities.
arXiv: Instrumentation and Methods for Astrophysics | 2018
Federico Biondi; Sagi Ben-Ami; Anna Brucalassi; R. U. Claudi; Jacopo Farinato; Hanindyo Kuncarayakti; Demetrio Magrin; Roberto Ragazzoni; Marco Riva; Sergio Campana; Pietro Schipani; Matteo Aliverti; Andrea Baruffolo; Giulio Capasso; Rosario Cosentino; Francesco D'Alessio; Paolo D'Avanzo; Oz Diner; Matteo Munari; Adam Rubin; Salvatore Scuderi; Fabrizio Vitali; Jani Achrén; José Antonio Araiza-Durán; Iair Arcavi; Andrea Bianco; E. Cappellaro; Mirko Colapietro; Massimo Della Valle; Sergio D'Orsi
Son Of X-Shooter (SOXS) is the new instrument for the ESO 3.5 m New Technology Telescope (NTT) in La Silla site (Chile) devised for the spectroscopic follow-up of transient sources. SOXS is composed by two medium resolution spectrographs able to cover the 350-2000 nm interval. An Acquisition Camera will provide a light imaging capability in the visible band. We present the procedure foreseen for the Assembly, Integration and Test activities (AIT) of SOXS that will be carried out at sub-systems level at various consortium partner premises and at system level both in Europe and Chile.
arXiv: Instrumentation and Methods for Astrophysics | 2018
Matteo Aliverti; Oz Diner; Anna Brucalassi; Hanindyo Kuncarayakti; Andrea Bianco; Sergio Campana; R. U. Claudi; Pietro Schipani; Andrea Baruffolo; Sagi Ben-Ami; Federico Biondi; Giulio Capasso; Rosario Cosentino; Francesco D'Alessio; Paolo D'Avanzo; Matteo Munari; Adam Rubin; Salvatore Scuderi; Fabrizio Vitali; Jani Achrén; José Antonio Araiza-Durán; Iair Arcavi; E. Cappellaro; Massimo Della Valle; Sergio D'Orsi; D. Fantinel; Avishay Gal-Yam; Matteo Genoni; Mika Hirvonen; J. K. Kotilainen
SOXS (Son of X-shooter) is a wide band, medium resolution spectrograph for the ESO NTT with a first light expected in early 2021. The instrument will be composed by five semi-independent subsystems: a pre-slit Common Path (CP), an Acquisition Camera (AC), a Calibration Unit (CU), the NIR spectrograph, and the UV-VIS spectrograph. In this paper, we present the mechanical design of the subsystems, the kinematic mounts developed to simplify the final integration procedure and the maintenance. The concept of the CP and NIR optomechanical mounts developed for a simple pre- alignment procedure and for the thermal compensation of reflective and refractive elements will be shown.
arXiv: Instrumentation and Methods for Astrophysics | 2018
Anna Brucalassi; Giuliano Pignata; José Antonio Araiza-Durán; Sergio Campana; R. U. Claudi; Pietro Schipani; Matteo Aliverti; Andrea Baruffolo; Sagi Ben-Ami; Federico Biondi; Giulio Capasso; Rosario Cosentino; Francesco D'Alessio; Paolo D'Avanzo; Oz Diner; Daniele Gardiol; Hanindyo Kuncarayakti; Matteo Munari; Adam Rubin; Salvatore Scuderi; Fabrizio Vitali; Jani Achrén; Iair Arcavi; Andrea Bianco; E. Cappellaro; Mirko Colapietro; Massimo Della Valle; Sergio D'Orsi; D. Fantinel; Johan Peter Uldall Fynbo
SOXS (Son of X-Shooter) will be the new medium resolution (R~4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.
arXiv: Instrumentation and Methods for Astrophysics | 2018
Ricardo Zánmar Sánchez; Matteo Munari; Sagi Ben-Ami; Adam Rubin; Anna Brucalassi; Hanindyo Kuncarayakti; Jani Achrén; J. K. Kotilainen; Tarun Kumar; Sergio Campana; R. U. Claudi; Pietro Schipani; Matteo Aliverti; Andrea Baruffolo; Federico Biondi; Giulio Capasso; Rosario Cosentino; Francesco D'Alessio; Paolo D'Avanzo; Oz Diner; Salvatore Scuderi; Fabrizio Vitali; José Antonio Araiza-Durán; Iair Arcavi; Andrea Bianco; E. Cappellaro; Mirko Colapietro; Massimo Della Valle; Sergio D'Orsi; D. Fantinel
An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the ‘4C’ design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions1-9 describing the SOXS design and properties as it is about to face the Final Design Review.
Proceedings of SPIE | 2012
Pietro Schipani; M. Capaccioli; Carmelo Arcidiacono; Javier Argomedo; M. Dall'Ora; Sergio D'Orsi; Jacopo Farinato; Demetrio Magrin; L. Marty; Roberto Ragazzoni; Gabriele Umbriaco
The VLT Survey Telescope (VST) has started the scientific operations on the ESO Paranal observatory after a successful commissioning period. It is currently the largest telescope in the world specially designed for surveying the sky in visible light. The VST is dedicated to survey programmes, supporting the VLT with wide-angle imaging by detecting and pre-characterising sources, which the VLT Unit Telescopes can then observe further.