Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergio Esposito is active.

Publication


Featured researches published by Sergio Esposito.


The Plant Cell | 2004

Protein Phosphorylation in Amyloplasts Regulates Starch Branching Enzyme Activity and Protein–Protein Interactions

Ian J. Tetlow; Robin Wait; Zhenxiao Lu; Rut Akkasaeng; Caroline G. Bowsher; Sergio Esposito; Behjat Kosar-Hashemi; Matthew K. Morell; Michael J. Emes

Protein phosphorylation in amyloplasts and chloroplasts of Triticum aestivum (wheat) was investigated after the incubation of intact plastids with γ-32P-ATP. Among the soluble phosphoproteins detected in plastids, three forms of starch branching enzyme (SBE) were phosphorylated in amyloplasts (SBEI, SBEIIa, and SBEIIb), and both forms of SBE in chloroplasts (SBEI and SBEIIa) were shown to be phosphorylated after sequencing of the immunoprecipitated 32P-labeled phosphoproteins using quadrupole-orthogonal acceleration time of flight mass spectrometry. Phosphoamino acid analysis of the phosphorylated SBE forms indicated that the proteins are all phosphorylated on Ser residues. Analysis of starch granule–associated phosphoproteins after incubation of intact amyloplasts with γ-32P-ATP indicated that the granule-associated forms of SBEII and two granule-associated forms of starch synthase (SS) are phosphorylated, including SSIIa. Measurement of SBE activity in amyloplasts and chloroplasts showed that phosphorylation activated SBEIIa (and SBEIIb in amyloplasts), whereas dephosphorylation using alkaline phosphatase reduced the catalytic activity of both enzymes. Phosphorylation and dephosphorylation had no effect on the measurable activity of SBEI in amyloplasts and chloroplasts, and the activities of both granule-bound forms of SBEII in amyloplasts were unaffected by dephosphorylation. Immunoprecipitation experiments using peptide-specific anti-SBE antibodies showed that SBEIIb and starch phosphorylase each coimmunoprecipitated with SBEI in a phosphorylation-dependent manner, suggesting that these enzymes may form protein complexes within the amyloplast in vivo. Conversely, dephosphorylation of immunoprecipitated protein complex led to its disassembly. This article reports direct evidence that enzymes of starch metabolism (amylopectin synthesis) are regulated by protein phosphorylation and indicate a wider role for protein phosphorylation and protein–protein interactions in the control of starch anabolism and catabolism.


Planta | 2001

Glucose-6-phosphate dehydrogenase in barley roots: kinetic properties and localisation of the isoforms

Sergio Esposito; Simona Carfagna; Graziella Massaro; Vincenza Vona; Vittoria Di Martino Rigano

Abstract. Two different isoforms of glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) have been partially purified from barley (Hordeum vulgare L., cv. Alfeo) roots. The procedure included an ammonium sulfate step, Q-Sepharose and Reactive Blue agarose chromatography, and led to 60-fold and 150-fold purification for the two enzymes, respectively. The Glc6PDH 1 isoform accounts for 17% of total activity of the enzyme in roots, and is very sensitive to the effects of NADP+/NADPH ratio and dithiothreitol; the Glc6PDH 2 isoform is less affected by reducing power and represents 83% of the total activity. The isoforms showed distinct pH optima, isoelectric points, Km for glucose-6-phosphate and a different electrophoretic mobility. The kinetic properties for the two enzymes were affected by ATP and metabolites. Both enzymes are inhibited to different extents by ATP when magnesium is omitted from the assay mixture, whereas the addition of ATP-Mg2+ had no effect on Glc6PDH activities. The Glc6PDH isoforms are usually present in the plastids and cytosol of plant cells. To verify the intracellular locations of the enzymes purified from barley roots, Glc6PDH was purified from isolated barley root plastids; this isoform showed kinetic parameters coincident with those found for Glc6PDH 1, suggesting a plastid location; the enzyme purified from the soluble fraction had kinetic parameters resembling those of Glc6PDH 2, confirming that this isoform is present in the cytosol of barley roots.


Plant Physiology | 2010

Characterization of a Developmental Root Response Caused by External Ammonium Supply in Lotus japonicus

Alessandra Rogato; Enrica D'Apuzzo; Ani Barbulova; Selim Omrane; Aurora Parlati; Simona Carfagna; Alex Costa; Fiorella Lo Schiavo; Sergio Esposito; Maurizio Chiurazzi

Plants respond to changes of nutrient availability in the soil by modulating their root system developmental plan. This response is mediated by systemic changes of the nutritional status and/or by local perception of specific signals. The effect of nitrate on Arabidopsis (Arabidopsis thaliana) root development represents a paradigm of these responses, and nitrate transporters are involved both in local and systemic control. Ammonium (NH4+) represents an important nitrogen (N) source for plants, although toxicity symptoms are often associated with high NH4+ concentration when this is present as the only N source. The reason for these effects is still controversial, and mechanisms associating ammonium supply and plant developmental programs are completely unknown. We determined in Lotus japonicus the range of ammonium concentration that significantly inhibits the elongation of primary and lateral roots without affecting the biomass of the shoot. The comparison of the growth phenotypes in different N conditions indicated the specificity of the ammonium effect, suggesting that this was not mediated by assimilatory negative feedback mechanisms. In the range of inhibitory NH4+ conditions, only the LjAMT1;3 gene, among the members of the LjAMT1 family, showed a strong increased transcription that was reflected by an enlarged topology of expression. Remarkably, the short-root phenotype was phenocopied in transgenic lines by LjAMT1;3 overexpression independently of ammonium supply, and the same phenotype was not induced by another AMT1 member. These data describe a new plant mechanism to cope with environmental changes, giving preliminary information on putative actors involved in this specific ammonium-induced response.


Environmental Pollution | 2013

Ultrastructural changes and Heat Shock Proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales – Bryophyta)

Adriana Basile; Sergio Sorbo; Barbara Conte; Manuela Cardi; Sergio Esposito

Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days. At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens. When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition. These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum.


Plant Physiology and Biochemistry | 2015

The effects of salt stress cause a diversion of basal metabolism in barley roots: Possible different roles for glucose-6-phosphate dehydrogenase isoforms

Manuela Cardi; Daniela Castiglia; Myriam Ferrara; Gea Guerriero; Maurizio Chiurazzi; Sergio Esposito

In this study the effects of salt stress and nitrogen assimilation have been investigated in roots of hydroponically-grown barley plants exposed to 150 mM NaCl, in presence or absence of ammonium as the sole nitrogen source. Salt stress determines a diversion of root metabolism towards the synthesis of osmolytes, such as glycine betaine and proline, and increased levels of reduced glutathione. The metabolic changes triggered by salt stress result in a decrease in both activities and protein abundance of key enzymes, namely GOGAT and PEP carboxylase, and in a slight increase in HSP70. These variations would enhance the requirement for reductants supplied by the OPPP, consistently with the observed increase in total G6PDH activity. The involvement and occurrence of the different G6PDH isoforms have been investigated, and the kinetic properties of partially purified cytosolic and plastidial G6PDHs determined. Bioinformatic analyses examining co-expression profiles of G6PDHs in Arabidopsis and barley corroborate the data presented. Moreover, the gene coding for the root P2-G6PDH isoform was fully sequenced; the biochemical properties of the corresponding protein were examined experimentally. The results are discussed in the light of the possible distinct roles and regulation of the different G6PDH isoforms during salt stress in barley roots.


Journal of Experimental Botany | 2011

Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase

Manuela Cardi; Kamel Chibani; Donata Cafasso; Nicolas Rouhier; Jean-Pierre Jacquot; Sergio Esposito

Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants.


Ecotoxicology and Environmental Safety | 2015

Effects of heavy metals on ultrastructure and Hsp70 induction in Lemna minor L. exposed to water along the Sarno River, Italy.

Adriana Basile; Sergio Sorbo; Manuela Cardi; Marco Lentini; Daniela Castiglia; P. Cianciullo; Barbara Conte; Stefano Loppi; Sergio Esposito

The effects of freshwater pollution in the highly contaminated river Sarno (Campania, Southern Italy) have been evaluated using bags containing the aquatic plant Lemna minor (Lemnacee, Arales), in order to determine morpho-physiological modifications as a response to pollutants. The exposition of Lemna bags for 7 days on three different sites along the river path showed alterations in chloroplasts and vacuoles shape and organization. Moreover, some specimens were exposed in vitro at the same heavy metal (HM) concentrations measured in the polluted sites of the river, and compared with data from the bag experiment; to verify the dose and time dependent effects, samples were exposed to HM in vitro at concentrations ranging from 10(-6) to 10(-4)M up to 7 days. Transmission electron microscopy (TEM) observations on in vitro plants confirmed that ultrastructural alterations affected most of plastids and the shape of different subcellular structures, namely vacuoles; in in vitro stressed specimens, Heat Shock Proteins 70 (Hsp70) levels changed, in dependence of changing levels of HM measured in different sites along the river path. Thus L. minor exhibited a possible correlation between the levels of HM pollution and Hsp70 occurrence; interestingly, the data presented showed that copper specifically increased Hsp70 levels at concentrations detected in polluted river waters, whereas cadmium and lead did not; on the other side, the latter represent highly toxic elements when specimens were exposed to higher levels in vitro. The effects of specific elements in vitro are compared to those observed in bags exposed along the river path; thus results are examined in order to propose L. minor as an organism able to be utilized to monitor heavy metals pollution; the possibility of using Hsp70s as specific markers of HM pollution is discussed.


Journal of Plant Physiology | 1998

Ammonium metabolism stimulation of glucose-6P dehydrogenase and phosphoenolpyruvate carboxylase in young barley roots

Sergio Esposito; Petronia Carillo; Simona Carfagna

Summary The effect of ammonium metabolism on the alternative pathways to glycolysis in young barley roots was investigated through measurements of enzyme activities and changes in amino acid levels. The activities of most glycolytic enzymes did not change either before or after the supply of ammonium to young barley plants. By contrast, increases in phosphoenolpyruvate carboxylase [EC 4.1.1.31] and glucose-6P dehydrogenase [EC 1.1.1.49] levels were measured, suggesting the activation of the pentose phosphate and anaplerotic pathways during ammonium assimilation. Electrophoretic analysis indicated at least two different isoforms of glucose-6P dehydrogenase in barley roots, one of which was increased by ammonium supply. Ammonium supply caused a significant increase in the activities of aspartate aminotransferase [EC 2.6.1.1], alanine aminotransferase [EC 2.6.1.2] and asparaginase [EC 3.5.1.1], and an increase in glut-amine and asparagine levels within 48 h. The results obtained seem to indicate the enhancement, by nitrogen assimilation, of both the dark CO2 fixation and the oxidative pentose phosphate pathway, which synthesise metabolic precursors for amino acid synthesis via transaminases. An involvement of anaplerotic CO2 fixation and of the isoforms of glucose-6P in the roots during ammonia assimilation is discussed.


Plant Biosystems | 2011

Antioxidant activity in extracts from Leptodictyum riparium (Bryophyta), stressed by heavy metals, heat shock, and salinity

Adriana Basile; Sergio Sorbo; Barbara Conte; B. Golia; S. Montanari; R. Castaldo Cobianchi; Sergio Esposito

Abstract We studied the antioxidant activity of the moss Leptodictyum riparium stressed with lead, cadmium, heat shock, and salinity. The acetonic extracts of the moss were tested for antioxidant activity on human whole blood leukocytes by a chemiluminescence (CL) assay. Stresses induced a significant increase of CL inhibition. Among the different stresses, heavy metals were the strongest enhancers of antioxidant activity. The different stresses induced antioxidant activity according the following scale: Cd > Pb > salinity > heat shock.


Journal of Plant Physiology | 2011

Changes in cysteine and O-acetyl-l-serine levels in the microalga Chlorella sorokiniana in response to the S-nutritional status

Simona Carfagna; Giovanna Salbitani; Vincenza Vona; Sergio Esposito

We analyzed the effects of deprivation and subsequent restoration of sulphate (S) in the nutrient solution on cysteine (Cys) and O-acetyl-L-serine (OAS) levels in Chlorella sorokiniana (211/8k). The removal of S from the culture medium caused a time-dependent increase in O-acetyl-L-serine(thiol)lyase (OASTL) activity and a decrease in soluble proteins content. The protein gel blot analysis was used to show that OASTL isoforms are located in the chloroplast and in the cytoplasm of S-starved cells. S-deprivation caused a decrease in the intracellular levels of Cys and glutathione (GSH) and an increase in serine (Ser) and OAS, reflecting an imbalance between sulphur and nitrogen assimilation. Re-supplying of sulphate to S-starved cells produced a decrease in OAS levels and concomitant rapid increase in Cys and GSH concentrations. The simultaneous addition of OAS and sulphate to S-starved cells did not further increase the concentration of Cys, suggesting the existence of a threshold level of intracellular Cys that is independent of the cellular concentration of OAS. Our findings that OAS is stored during S-starvation and that its quick decrease appears to be coupled with the increase of Cys levels upon re-supply of sulphate, imply that the central role that these two compounds play is in the regulation of sulphur-assimilating enzymes in response to the S status of the cell.

Collaboration


Dive into the Sergio Esposito's collaboration.

Top Co-Authors

Avatar

Simona Carfagna

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Vincenza Vona

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Manuela Cardi

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Adriana Basile

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Sergio Sorbo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Simone Landi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Barbara Conte

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gea Guerriero

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge