Sergio Nesmachnow
University of the Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio Nesmachnow.
International Transactions in Operational Research | 2013
Enrique Alba; Gabriel Luque; Sergio Nesmachnow
The field of parallel metaheuristics is continuously evolving as a result of new technologies and needs that researchers have been encountering. In the last decade, new models of algorithms, new hardware for parallel execution/communication, and new challenges in solving complex problems have been making advances in a fast manner. We aim to discuss here on the state of the art, in a summarized manner, to provide a solution to deal with some of the growing topics. These topics include the utilization of classic parallel models in recent platforms (such as grid/cloud architectures and GPU/APU). However, porting existing algorithms to new hardware is not enough as a scientific goal, therefore researchers are looking for new parallel optimization and learning models that are targeted to these new architectures. Also, parallel metaheuristics, such as dynamic optimization and multiobjective problem resolution, have been applied to solve new problem domains in past years. In this article, we review these recent research areas in connection to parallel metaheuristics, as well as we identify future trends and possible open research lines for groups and PhD students.
Applied Soft Computing | 2011
Martín Pedemonte; Sergio Nesmachnow; Héctor Cancela
Abstract: Ant colony optimization (ACO) is a well-known swarm intelligence method, inspired in the social behavior of ant colonies for solving optimization problems. When facing large and complex problem instances, parallel computing techniques are usually applied to improve the efficiency, allowing ACO algorithms to achieve high quality results in reasonable execution times, even when tackling hard-to-solve optimization problems. This work introduces a new taxonomy for classifying software-based parallel ACO algorithms and also presents a systematic and comprehensive survey of the current state-of-the-art on parallel ACO implementations. Each parallel model reviewed is categorized in the new taxonomy proposed, and an insight on trends and perspectives in the field of parallel ACO implementations is provided.
grid computing | 2013
Sergio Nesmachnow; Bernabé Dorronsoro; Johnatan E. Pecero; Pascal Bouvry
We address a multicriteria non-preemptive energy-aware scheduling problem for computational Grid systems. This work introduces a new formulation of the scheduling problem for multicore heterogeneous computational Grid systems in which the minimization of the energy consumption, along with the makespan metric, is considered. We adopt a two-level model, in which a meta-broker agent (level 1) receives all user tasks and schedules them on the available resources, belonging to different local providers (level 2). The computing capacity and energy consumption of resources are taken from real multi-core processors from the main current vendors. Twenty novel list scheduling methods for the problem are proposed, and a comparative analysis of all of them over a large set of problem instances is presented. Additionally, a scalability study is performed in order to analyze the contribution of the best new bi-objective list scheduling heuristics when the problem dimension grows. We conclude after the experimental analysis that accurate trade-off schedules are computed by using the new proposed methods.
Applied Soft Computing | 2012
Sergio Nesmachnow; Héctor Cancela; Enrique Alba
This work presents a novel parallel micro evolutionary algorithm for scheduling tasks in distributed heterogeneous computing and grid environments. The scheduling problem in heterogeneous environments is NP-hard, so a significant effort has been made in order to develop an efficient method to provide good schedules in reduced execution times. The parallel micro evolutionary algorithm is implemented using MALLBA, a general-purpose library for combinatorial optimization. Efficient numerical results are reported in the experimental analysis performed on both well-known problem instances and large instances that model medium-sized grid environments. The comparative study of traditional methods and evolutionary algorithms shows that the parallel micro evolutionary algorithm achieves a high problem solving efficacy, outperforming previous results already reported in the related literature, and also showing a good scalability behavior when facing high dimension problem instances.
International Journal of Metaheuristics | 2014
Sergio Nesmachnow
This article presents an overview of metaheuristics as high-level soft computing strategies for solving optimisation problems. A general view of the field is presented, and a review of the main algorithms within the class of metaheuristics is reviewed, by introducing the main concepts behind their formulations and their application to solve real-world problems from several domains. A review of the main articles published in International Journal of Metaheuristics is also presented. Finally, some of the main current and future research lines in the field are commented as concluding remarks.
soft computing | 2010
Sergio Nesmachnow; Héctor Cancela; Enrique Alba
This work presents sequential and parallel evolutionary algorithms (EAs) applied to the scheduling problem in heterogeneous computing environments, a NP-hard problem with capital relevance in distributed computing. These methods have been specifically designed to provide accurate and efficient solutions by using simple operators that allow them to be later extended for solving realistic problem instances arising in distributed heterogeneous computing (HC) and grid systems. The EAs were codified over MALLBA, a general-purpose library for combinatorial optimization. Efficient numerical results are reported in the experimental analysis performed on well-known problem instances. The comparative study of scheduling methods shows that the parallel versions of the implemented evolutionary algorithms are able to achieve high problem solving efficacy, outperforming traditional scheduling heuristics and also improving over previous results already reported in the related literature.
grid computing | 2016
Andrei Tchernykh; Luz Lozano; Uwe Schwiegelshohn; Pascal Bouvry; Johnatan E. Pecero; Sergio Nesmachnow; Alexander Yu. Drozdov
This paper focuses on a bi-objective experimental evaluation of online scheduling in the Infrastructure as a Service model of Cloud computing regarding income and power consumption objectives. In this model, customers have the choice between different service levels. Each service level is associated with a price per unit of job execution time, and a slack factor that determines the maximal time span to deliver the requested amount of computing resources. The system, via the scheduling algorithms, is responsible to guarantee the corresponding quality of service for all accepted jobs. Since we do not consider any optimistic scheduling approach, a job cannot be accepted if its service guarantee will not be observed assuming that all accepted jobs receive the requested resources. In this article, we analyze several scheduling algorithms with different cloud configurations and workloads, considering the maximization of the provider income and minimization of the total power consumption of a schedule. We distinguish algorithms depending on the type and amount of information they require: knowledge free, energy-aware, and speed-aware. First, to provide effective guidance in choosing a good strategy, we present a joint analysis of two conflicting goals based on the degradation in performance. The study addresses the behavior of each strategy under each metric. We assess the performance of different scheduling algorithms by determining a set of non-dominated solutions that approximate the Pareto optimal set. We use a set coverage metric to compare the scheduling algorithms in terms of Pareto dominance. We claim that a rather simple scheduling approach can provide the best energy and income trade-offs. This scheduling algorithm performs well in different scenarios with a variety of workloads and cloud configurations.
Cluster Computing | 2013
Jamal Toutouh; Sergio Nesmachnow; Enrique Alba
This work tackles the problem of reducing the power consumption of the OLSR routing protocol in vehicular networks. Nowadays, energy-aware and green communication protocols are important research topics, specially when deploying wireless mobile networks. This article introduces a fast automatic methodology to search for energy-efficient OLSR configurations by using a parallel evolutionary algorithm. The experimental analysis demonstrates that significant improvements over the standard configuration can be attained in terms of power consumption, with no noteworthy loss in the QoS.
IEEE Computational Intelligence Magazine | 2015
Sergio Nesmachnow; Santiago Iturriaga; Bernabé Dorronsoro
This article introduces a new kind of broker for cloud computing, whose business relies on outsourcing virtual machines (VMs) to its customers. More specifically, the broker owns a number of reserved instances of different VMs from several cloud providers and offers them to its customers in an on-demand basis, at cheaper prices than those of the cloud providers. The essence of the business resides in the large difference in price between on-demand and reserved VMs. We define the Virtual Machine Planning Problem, an optimization problem to maximize the profit of the broker. We also propose a number of efficient smart heuristics (seven two-phase list scheduling heuristics and a reordering local search) to allocate a set of VM requests from customers into the available pre-booked ones, that maximize the broker earnings. We perform experimental evaluation to analyze the profit and quality of service metrics for the resulting planning, including a set of 400 problem instances that account for realistic workloads and scenarios using real data from cloud providers.
computational intelligence | 2012
Sergio Nesmachnow; Enrique Alba; Héctor Cancela
Scheduling is a capital problem when using distributed heterogeneous computing (HC) and grid environments to solve complex problems. The scheduling problem in heterogeneous environments is NP‐hard, so a significant effort has been made to develop efficient methods for solving the problem. However, few works have faced realistic grid‐sized problem instances. This work presents a parallel CHC (pCHC) evolutionary algorithm codified over MALLBA, a general‐purpose library for combinatorial optimization, for solving the scheduling problem in HC and grid environments. Efficient numerical results are reported in the experimental analysis performed on both a standard benchmark and a set of large‐sized problem instances specially designed in this work. The comparative study shows that pCHC is able to achieve high problem solving efficacy, significantly improving over traditional deterministic scheduling methods, while also showing a good scalability behavior when solving large problem instances.