Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergio R. Roiloa is active.

Publication


Featured researches published by Sergio R. Roiloa.


Biological Invasions | 2010

Physiological integration increases the survival and growth of the clonal invader Carpobrotus edulis.

Sergio R. Roiloa; Susana Rodríguez-Echeverría; Eduardo de la Peña; Helena Freitas

Clonal growth seems to be a common trait for many of the most aggressive invasive plant species. However, little research has been conducted to determine the role of clonality in the successful invasion of new areas by exotic species. Carpobrotus edulis (L.) N.E. Br. is a mat-forming succulent plant, native to South Africa that is invasive in coastal dunes of Australia, New Zealand, USA and Southern Europe. Although Carpobrotus edulis is a clonal plant, there is no information on the role of clonality for the invasion by this species, therefore the objective of this study was to test whether or not physiological integration improves the performance of C. edulis invading coastal sand dunes. To do that, a 6-month field experiment was designed in which the stolon connections between the apical ramets and the C. edulis mats were severed to prevent physiological integration. This treatment was applied to ramets growing under high and low competition with the native species. Apical ramets with intact stolon connections were used as control. Integration improved the survivorship and growth of apical ramets, both in high and low competition. Connected ramets showed a more pronounced increase of clonal growth (estimated as stolon length) during the experimental period and a higher total biomass and number of ramets at the completion of the experiment. In terms of survivorship, the benefit of integration was greater under high competition. Physiological integration can therefore be considered an important factor in the invasiveness of C. edulis, both in open space and in direct competition with the native plants.


Biological Invasions | 2010

Plant-soil feedback as a mechanism of invasion by Carpobrotus edulis

Eduardo de la Peña; Nikki de Clercq; Dries Bonte; Sergio R. Roiloa; Susana Rodríguez-Echeverría; Helena Freitas

Invasive plant species have been suggested to change the composition of the soil community in a way that results in a positive feedback for them and a negative feedback for the native plant community. Carpobrotus edulis, a species native to South Africa, is one of the most aggressive exotic species in Mediterranean Europe. Although several aspects of its invasion biology have been studied, the occurrence of plant-soil feedback has been scarcely investigated. We first checked for the existence of biotic resistance in soils from two invaded sites of Mediterranean Europe and one site in the native area. Secondly, we evaluated the effects of soil conditioning on the germination and plant growth of C. edulis and two key species of native dunes. Finally, we tested the effects of short- and long-term soil conditioning on the performance and reproductive effort of C. edulis. Our results show that at first there is a natural resistance to invasion by the soil biota. Later, biotic resistance in invaded soil is suppressed by the establishment of a soil community that enhances the growth of C. edulis and that negatively influences the growth and survival of the native plants. Long-term soil conditioning in the field resulted in shifts in the balance between vegetative growth and sexual reproduction. Long-term invasion was also reflected in high levels of endophyte colonization by chytrids in roots, although the physiological consequences of this colonization remain unknown. The results obtained illustrate a mechanism that explains how C. edulis breaks the initial biotic resistance of newly-invaded landscapes. Finally, this study highlights the importance of studying plant-soil interactions on different members of the plant community and temporal stages in order to fully understand invasion.


International Journal of Plant Sciences | 2005

Presence of Developing Ramets of Fragaria vesca L. Increases Photochemical Efficiency in Parent Ramets

Sergio R. Roiloa; Rubén Retuerto

Clonal plants may translocate photosynthates, water, and nutrients from established (source) ramets to developing (sink) ramets. The sink/source hypothesis states that photosynthesis may be regulated, at least in part, by the balance between source and sink tissues. We investigated the influence of physiological integration on photosynthetic efficiencies to test predictions based on the sink/source hypothesis that photosynthetic efficiencies in parent ramets may be increased by the assimilate demand made by connected offspring ramets. We grew parent ramets of Fragaria vesca connected to four, one, or no offspring ramets. They were grown in well‐watered or drought‐stress conditions. All parent ramets survived at the end of the experiment, regardless of the number of offspring ramets they supported or the moisture conditions in which these were growing. However, the survivorship of offspring ramets was higher for well‐watered and connected ramets than for drought‐stressed and disconnected ramets. In parent ramets, spectral and fluorescence parameters related to photochemical efficiency increased with the number of interramet connections. We conclude that developing ramets of F. vesca, by acting as sinks for assimilates, induce an enhancement of the photosynthetic activity of the parental ramets by a feedback regulation process.


Plant Ecology | 2013

The effect of soil legacy on competition and invasion by Acacia dealbata Link

Susana Rodríguez-Echeverría; Catarina Afonso; Marta Correia; Paula Lorenzo; Sergio R. Roiloa

Plant–soil feedbacks can exacerbate competition between invasive and native species, although the net effect of the interaction between soil biota and competition is likely to be species-specific. Very few studies have addressed the combined effect of soil and competition on plant performance and invasion by exotic woody species. This study explores plant growth and competition between Acacia dealbata and Pinus pinaster in three different soils—native, disturbed and invaded—in Portugal. The invasion of native P. pinaster forests by A. dealbata can be explained by the stronger competition ability of the exotic tree species. Competition is stronger in the native soil, allowing the establishment of A. dealbata in this soil and the displacement of P. pinaster. During invasion, A. dealbata changes soil conditions and establishes positive plant–soil feedbacks that promote its own germination and growth and increase P. pinaster mortality. Soil disturbance by the introduction of a different exotic species, Eucalyptus globulus, did not promote invasion by A. dealbata. We found a significant effect of soil legacy on both growth and competitive ability of the invasive A. dealbata. The ability of A. dealbata to outcompete the native P. pinaster in its own soil and the positive plant–soil feedbacks established after invasion are important mechanisms for A. dealbata invasion.


Biological Invasions | 2013

Developmentally-programmed division of labour in the clonal invader Carpobrotus edulis.

Sergio R. Roiloa; Susana Rodríguez-Echeverría; Helena Freitas; Rubén Retuerto

Invasive species are one of the main causes for the loss of global biodiversity. However, the mechanisms that explain the success of invasive species remain unsolved. Clonal growth has been pointed out as an attribute that could contribute to the invasiveness of plants, however little research has been conducted to determine the importance of clonal traits in successful invaders. One of the most interesting attributes related to clonal growth is the capacity for division of labour. In this experiment we investigated the capacity for division of labour in the aggressive invader Carpobrotus edulis, and how clonal integration can contribute to the expansion of this species. Division of labour was determined by studying the degree of morphological and physiological specialization of individual ramets to a specific activity: acquisition of soil or aboveground resources and aboveground expansion. Our results showed that there is division of labour in the clonal fragments, with older ramets increasing the biomass allocated to roots (specialization in the uptake of belowground resources) and younger ramets increasing the chlorophyll content and aboveground biomass (specialization in the uptake of aboveground resources). Physiological integration allows division of labour, and as consequence the overall performance of the clonal fragment was enhanced, with connected clonal fragments showing a higher total biomass than severed clonal fragments. Division of labour increased the aboveground growth of apical ramets of C. edulis, and therefore could contribute to an effective colonization of the surrounding area by this aggressive invader. Our study is the first exploring the role of division of labour in the expansion of an invader, and supports the idea that clonal traits could increase the invasiveness of plant species.


Ecological Research | 2012

Clonal integration in Fragaria vesca growing in metal-polluted soils: parents face penalties for establishing their offspring in unsuitable environments

Sergio R. Roiloa; Rubén Retuerto

Clonal plants often establish descendent ramets in sites with contrasting presence of favourable and unfavourable factors. Connections between ramets allow translocation of essential resources from established ramets to developing ramets and, as consequence, integration confers net benefits to ramets growing under unfavourable conditions. Therefore, integrated ramets may survive in habitat patches that would be lethal to independent ramets or non-clonal plants. This experiment aimed to investigate the physiological and morphological responses of the clonal plant Fragaria vesca growing in heterogeneous substrate with patches of contrasting quality (i.e. uncontaminated or heavy-metal-contaminated). We observed that parents reduced their photosynthetic efficiencies and growth as consequence of maintaining their offspring. This cost did not affect survival of the parents. Physiological integration brings about benefits to offspring ramets growing both at uncontaminated and heavy-metal-contaminated soils. The benefits of integration were detected in both physiological and morphological traits, enhancing the survivorship of offspring ramets in the Cu-polluted soils. We conclude that integration improves the performance of developing ramets of F. vesca growing in heavy-metal-contaminated habitats, allowing clone systems to overcome the establishment risks and maintain their presence in these less favourable sites.


Functional Plant Biology | 2006

Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil

Sergio R. Roiloa; Rubén Retuerto

The ability of clonal systems to spread by ramet production may expose the clone to spatial heterogeneity. This study explored the physiological and morphological responses in the clonal plant Fragaria vesca L. growing in homogeneous (Cu-contaminated or uncontaminated) or in heterogeneous environments with patches of contrasting quality (Cu-contaminated or uncontaminated). We also investigated the potential of this species to selectively establish ramets within a heterogeneous environment. In heterogeneous environments, plants expanded ramets randomly, but selectively established ramets in the favourable patches. We discuss whether the selective establishment of ramets is a consequence of direct suppression of plant growth due to copper toxicity. The assimilate demand from offspring ramets in unfavourable environments increased the chlorophyll content and photosynthetic efficiency of parents by a feedback regulation process. Integration ameliorated the effects of copper on the photochemical efficiency of the offspring ramets. We did not observe integration costs, in terms of total biomass, for parents supporting ramets in Cu-contaminated environments, although we did detect costs in terms of ramet production. Parents with offspring ramets in Cu-contaminated environments produced 25 times more reproductive biomass than parents with offspring ramets in uncontaminated environments. We interpret this as a strategy for escaping from stressful environments. In this study, we extend the concept of physiological integration in clonal plants to include photochemical responses.


American Journal of Botany | 2014

Adaptive plasticity to heterogeneous environments increases capacity for division of labor in the clonal invader Carpobrotus edulis (Aizoaceae)

Sergio R. Roiloa; Susana Rodríguez-Echeverría; Aaron Lopez-Otero; Rubén Retuerto; Helena Freitas

UNLABELLED • PREMISE OF THE STUDY Clonality has been proposed as an important mechanism favoring plant invasions, but few studies have been conducted to determine the role of clonal traits on successful invaders. An interesting trait associated with clonality is the capacity for division of labor. Division of labor requires a negative spatial correlation between the availabilities of two essential resources and ramet specialization for locally abundant resources to increase the overall performance of the clone. We hypothesized that the capacity for division of labor in the clonal invader Carpobrotus edulis will be selected in those clones from patchy environments where this trait could be an advantage.• METHODS Morphological and physiological division of labor was compared between clones from coastal sand dunes (where nutrients and light show a negative spatial covariance) and from rocky coasts (where nutrients and light are homogenously distributed).• KEY RESULTS Clones from coastal sand dunes showed a greater capacity than clones from rocky coasts for division of labor. Specialization for abundance was found at the morphological (biomass allocated to roots) and the physiological (photochemical efficiency) level.• CONCLUSIONS The greater ability for division of labor in the patchy environment where the presence of this trait would be more beneficial demonstrates the existence of local adaptation and suggests that rapid evolution in clonal traits could be contributing to the success of the invader C. edulis. This study is one of the few showing that division of labor is under selection and is the first reporting adaptive division of labor of an aggressive invader.


Plant Ecology | 2013

The effects of physiological integration on biomass partitioning in plant modules: an experimental study with the stoloniferous herb Glechoma hederacea

Sergio R. Roiloa; Michael J. Hutchings

Morphological and physiological plasticity are crucial attributes enabling plants to acquire resources from heterogeneous habitats. Although physiological integration can modify biomass partitioning in modules, especially when connected modules experience different conditions, its ecological importance has been largely overlooked. This experiment examined its effects on above- and belowground biomass partitioning by modules in the stoloniferous herb Glechoma hederacea. We studied how biomass allocation to roots by younger ramets was affected by connection to older ramets, and by nutrient conditions. A lower proportion of biomass was allocated to roots by younger ramets growing under low nutrient (LN) conditions when connected to older ramets in high nutrient (HN) conditions than when they were isolated, demonstrating localised modification of biomass partitioning due to physiological integration. The proportion of biomass allocated to roots by younger ramets was also lower when connected to older ramets in HN conditions than when connected to older ramets in LN conditions. Thus, the effect of integration on biomass partitioning depended on the nutrient conditions experienced by connected ramets. Such changes in biomass partitioning would result in more extensive stolon growth, and greater lateral displacement of new ramets. Understanding the ecological implications of phenotypic plasticity in plants will require further examination of the effects of physiological integration when connected modules experience contrasting growing conditions. This study demonstrates that such integration affects the biomass allocation strategy of connected ramets, enhancing resource acquisition in heterogeneous habitats. The widespread success of clonality in many communities is likely to be strongly promoted by this characteristic.


Frontiers in Plant Science | 2016

Division of Labor Brings Greater Benefits to Clones of Carpobrotus edulis in the Non-native Range: Evidence for Rapid Adaptive Evolution

Sergio R. Roiloa; Rubén Retuerto; Josefina G. Campoy; Ana Novoa; Rodolfo Barreiro

Why some species become invasive while others do not is a central research request in biological invasions. Clonality has been suggested as an attribute that could contribute to plant invasiveness. Division of labor is an important advantage of clonal growth, and it seems reasonable to anticipate that clonal plants may intensify this clonal attribute in an invaded range because of positive selection on beneficial traits. To test this hypothesis, we collected clones of Carpobrotus edulis from native and invasive populations, grew pairs of connected and severed ramets in a common garden and under negative spatial covariance of nutrients and light to induce division of labor, and measured biomass allocation ratios, final biomass, and photochemical efficiency. Our results showed that both clones from the native and invaded range develop a division of labor at morphological and physiological level. However, the benefit from the division of labor was significantly higher in apical ramets from the invaded range than in ramets from the native area. This is a novel and outstanding result because it provides the first evidence that the benefit of a key clonal trait such as division of labor may have been subjected to evolutionary adaptation in the invaded range. The division of labor can therefore be considered an important trait in the invasiveness of C. edulis. An appropriate assessment of the influence of clonal traits in plant invasions seems key for understanding the underlying mechanisms behind biological invasions of new environments.

Collaboration


Dive into the Sergio R. Roiloa's collaboration.

Top Co-Authors

Avatar

Rubén Retuerto

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josefina G. Campoy

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Alpert

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lua Lopez

University of A Coruña

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge