Sergio Recalde
University of Navarra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio Recalde.
Gastroenterology | 2008
January T. Salas; Jesus M. Banales; Sarai Sarvide; Sergio Recalde; Alex Ferrer; Iker Uriarte; Ronald P. J. Oude Elferink; Jesús Prieto; Juan F. Medina
BACKGROUND & AIMS Cl(-)/HCO(3)(-) anion exchanger 2 (AE2) is involved in intracellular pH (pH(i)) regulation and transepithelial acid-base transport, including secretin-stimulated biliary bicarbonate excretion. AE2 gene expression was found to be reduced in liver biopsy specimens and blood mononuclear cells from patients with primary biliary cirrhosis (PBC), a disease characterized by chronic nonsuppurative cholangitis associated with antimitochondrial antibodies (AMA) and other autoimmune phenomena. In mice with widespread Ae2 gene disruption, we previously reported altered spermiogenesis and reduced gastric acid secretion. We now describe the hepatobiliary and immunologic changes observed in these Ae2(a.b)-deficient mice. METHODS In this murine model, splenocyte pH(i) and T-cell populations were studied by flow cytometry. CD3-stimulated cytokine secretion was estimated using cytokine arrays. AMA were evaluated by immunoblotting and proteomics. Hepatobiliary changes were assessed by immunohistopathology, flow cytometry, and serum biochemistry. Cholangiocyte gene expression was analyzed by real-time polymerase chain reaction. RESULTS Ae2(a,b)(-/-) mice exhibit splenomegaly, elevated pH(i) in splenocytes, increased production of interleukin-12p70 and interferon gamma, expanded CD8(+) T-cell population, and under represented CD4(+)FoxP3(+)/regulatory T cells. Most Ae2(a,b)(-/-) mice tested positively for AMA, showing increased serum levels of immunoglobulin M and G, and liver-specific alkaline phosphatase. About one third of Ae2(a,b)(-/-) mice had extensive portal inflammation with CD8(+) and CD4(+) T lymphocytes surrounding damaged bile ducts. Cholangiocytes isolated from Ae2(a,b)(-/-) mice showed gene expression changes compatible with oxidative stress and increased antigen presentation. CONCLUSIONS Ae2 deficiency alters pH(i) homeostasis in immunocytes and gene expression profile in cholangiocytes, leading to immunologic and hepatobiliary changes that resemble PBC.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Juan F. Medina; Sergio Recalde; Jesús Prieto; Jon Lecanda; Elena Sáez; Colin D. Funk; Paola Vecino; Marian A. van Roon; Roelof Ottenhoff; Piter J. Bosma; Conny T. Bakker; Ronald P. J. Oude Elferink
Na+-independent anion exchangers (AE) mediate electroneutral exchange of Cl- for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} ions across cell membranes, being involved in intracellular pH and cell volume regulation and in transepithelial hydroionic fluxes. Bicarbonate activation of adenylyl cyclase is known to be necessary for sperm motility and sperm capacitation, and a few studies have suggested a possible role of AE carriers in reproduction. Among the four AE genes identified in mammals thus far, only Ae2 (Slc4a2) has been determined to be expressed in the male reproductive system, especially in developing spermatozoa and in epididymal epithelium. Most AE genes drive alternative transcription, which in mouse Ae2 results in several Ae2 isoforms. Here, we generated mice carrying a targeted disruption of Ae2 that prevents the expression of the three AE2 isoforms (Ae2a, Ae2b1, and Ae2b2) normally found in mouse testes. Male Ae2-/- mice (but not female Ae2-/- mice) are infertile. Histopathological analysis of Ae2-/- testes shows an interruption of spermiogenesis, with only a few late spermatids and a complete absence of spermatozoa in the seminiferous tubules. The number of apoptotic bodies is increased in the seminiferous tubules and in the epididymis, which also shows squamous metaplasia of the epididymal epithelium. Our findings reveal an essential role of Ae2 in mouse spermiogenesis and stress the recently postulated involvement of bicarbonate in germ-cell differentiation through the bicarbonate-sensitive soluble-adenylyl-cyclase pathway.
The FASEB Journal | 2009
Ineke D. C. Jansen; Pablo Mardones; Fernando Lecanda; Teun J. de Vries; Sergio Recalde; Kees A. Hoeben; Ton Schoenmaker; J. H. Ravesloot; Marcel M. G. J. van Borren; Theo M. G. J. van Eijden; A.L.J.J. Bronckers; Sakari Kellokumpu; Juan F. Medina; Vincent Everts; Ronald P. J. Oude Elferink
Extracellular acidification by osteoclasts is essential to bone resorption. During proton pumping, intracellular pH (pHi) is thought to be kept at a near‐neutral level by chloride/bicarbonate exchange. Here we show that the Na+‐independent chloride/bicarbonate anion exchanger 2 (Ae2) is relevant for this process in the osteoclasts from the longbonesof Ae2a,b–/– mice (deficient in the main isoforms Ae2a, Ae2b1, and Ae2b2). Although the long bones of these mice had normal numbers of multinucleated osteoclasts, these cells lacked a ruffled border and displayed impaired bone resorption activity, resulting in an osteopetrotic phenotype of long bones. Moreover, in vitro osteoclastogenesis assays using long‐bone marrow cells from Ae2a,b–/– mice suggested a role for Ae2 in osteoclast formation, as fusion of preosteoclasts for the generation of active multinucleated osteoclasts was found to be slightly delayed. In contrast to the abnormalities observed in the long bones, the skull of Ae2a,b–/– mice showed no alterations, indicating that calvaria osteoclasts may display normal resorptive activity. Microfluorimetric analysis of osteoclasts from normal mice showed that, in addition to Ae2 activity, calvaria osteoclasts—but not long‐bone osteoclasts—possess a sodium‐dependent bicarbonate transporting activity. Possibly, this might compensate for the absence of Ae2 in calvaria osteoclasts of Ae2a,b–/– mice.—Jansen, I. D. C., Mardones, P., Lecanda, F., de Vries, T. J., Recalde, S., Hoeben, K. A., Schoenmaker, T., Ravesloot, J.‐H., van Borren, M. M. G. J., van Eijden, T. M., Bronckers, A. L. J. J., Kellokumpu, S., Medina, J. F., Everts, V., Oude Elferink, R. P. J. Ae2a,b‐Deficient mice exhibit osteopetrosis of long bones but not of calvaria. FASEB J. 23, 3470–3481 (2009). www.fasebj.org
Investigative Ophthalmology & Visual Science | 2012
Rubén Martínez-Barricarte; Sergio Recalde; Patricia Fernández-Robredo; Isabel Millán; Leticia Olavarrieta; Antonio Viñuela; Julián Pérez-Pérez; Alfredo García-Layana; Santiago Rodríguez de Córdoba
PURPOSE Age-related macular degeneration (AMD) has a strong genetic component with a major locus at 1q31, including the complement factor H (CFH) gene. Detailed analyses of this locus have demonstrated the existence of one SNP haplotype block, carrying the CFH 402His allele, which confers increased risk for AMD, and two protective SNP haplotypes, one of them carrying a deletion of the CFHR1 and CFHR3 genes (ΔCFHR3-CFHR1). The purpose of these studies was to evaluate the contribution of newly described CFHR1 alleles to the association of the 1q31 locus with AMD. METHODS Two hundred fifty-nine patients and 191 age-matched controls of Spanish origin were included in a transversal case-control study using multivariate logistic regression analysis and ROC (receiver operating characteristic) statistics to generate and test models predictive of the development of AMD. RESULTS This study showed for the first time that a particular CFHR1 allotype, CFHR1*A, is strongly associated with AMD (odds ratio, 2.08; 95% confidence interval, 1.59-2.73; P<0.0001) and illustrate a peculiar genotype-phenotype correlation between the CFHR1 alleles and different diseases that may have important implications for understanding the pathophysiology of AMD. It also shows that CFHR1*A is in strong linkage disequilibrium with the CFH 402His allele, which provides additional candidate variants within the major risk haplotype at 1q31, promoting its association with AMD. Further, using the Spanish population as a model, the results showed that analysis of the CFHR1 genotypes provide sufficient information to delineate the individual risk of developing AMD. CONCLUSIONS The results support a relevant role of CFHR1 in the pathogenesis of AMD.
Journal of Ophthalmology | 2014
Patricia Fernández-Robredo; Ana Sancho; Sandra Johnen; Sergio Recalde; N Gama; Gabriele Thumann; Jürgen Groll; Alfredo García-Layana
Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruchs membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein.
Current Eye Research | 2009
Patricia Fernández-Robredo; Sergio Recalde; Gonzalo Arnáiz; Angel Salinas-Alamán; Luis M. Sádaba; Maite Moreno-Orduña; Alfredo García-Layana
Purpose: Apolipoprotein E-/- deficient (apoE-/-) mice develop hypercholesterolemia, atherosclerosis, and retinal alterations. We studied the oxidative status and vascular endothelial growth factor (VEGF) expression in murine retinal pigment epithelium-choroid (RPE) and Bruchs membrane (BM) ultrastructure and the effect of zeaxanthin. Methods: Ten 6-month-old C57BL/6 and 40 apoE-/- mice were divided into four groups (n = 10 each) and fed different diets for 12 weeks based on body weight: wild type (WT) and apoE-/- (AE-Con) mice standard rodent chow; apoE-/- mice (AES) standard rodent chow with ascorbate (800 mg/kg), tocopherol (1053 mg/kg), and zinc (135 mg/kg); and apoE-/- mice the last diet plus zeaxanthin with either 0.4 g/kg (AES-Z04) or 4 g/kg feed (AES-Z4). Results: Plasma total cholesterol (TC) and triglycerides (TG) and urine lipid peroxidation (isoprostanes) were measured. VEGF expression was determined in RPE-choroid homogenates. Zeaxanthin uptake was assessed in liver and retina by high-performance liquid chromatography; the retinal ultrastructure was analyzed by electron microscopy. AE-Con mice had higher plasma TC (p < 0.001) and TG (p < 0.001) values than WT mice. AE-Con mice had higher RPE-choroid-VEGF levels than WT mice (p < 0.05), BM thickness (p < 0.001) and presence of basal laminar deposits (BLamD). AES-Z4 resulted in lower urinary isoprostanes (p = 0.054) and lower VEGF expression in the RPE-choroid (p < 0.01). BM in the AES-Z4 animals had less confluent BLamD than AE-Con, AES, or AES-Z04 animals. Conclusions: We have reported that supplementation with zeaxanthin and antioxidants may delay or reverse alterations in the RPE and deposits in BM, and reduced VEGF expression observed in apoE-/- mice.
Journal of The American Society of Nephrology | 2016
Sergio Recalde; Agustín Tortajada; Marta Subias; Jaouad Anter; Miquel Blasco; Ramona Maranta; Rosa M. Coco; Sheila Pinto; Marina Noris; Alfredo García-Layana; Santiago Rodríguez de Córdoba
The complement factor H (FH) mutation R1210C, which was described in association with atypical hemolytic uremic syndrome (aHUS), also confers high risk of age-related macular degeneration (AMD) and associates with C3 glomerulopathy (C3G). To reveal the molecular basis of these associations and to provide insight into what determines the disease phenotype in FH-R1210C carriers, we identified FH-R1210C carriers in our aHUS, C3G, and AMD cohorts. Disease status, determined in patients and relatives, revealed an absence of AMD phenotypes in the aHUS cohort and, vice versa, a lack of renal disease in the AMD cohort. These findings were consistent with differences in the R1210C-independent overall risk for aHUS and AMD between mutation carriers developing one pathology or the other. R1210C is an unusual mutation that generates covalent complexes between FH and HSA. Using purified FH proteins and surface plasmon resonance analyses, we demonstrated that formation of these FH-HSA complexes impairs accessibility to all FH functional domains. These data suggest that R1210C is a unique C-terminal FH mutation that behaves as a partial FH deficiency, predisposing individuals to diverse pathologies with distinct underlying pathogenic mechanisms; the final disease outcome is then determined by R1210C-independent genetic risk factors.
PLOS ONE | 2013
Javier Zarranz-Ventura; Patricia Fernández-Robredo; Sergio Recalde; Angel Salinas-Alamán; Francisco Borrás-Cuesta; Javier Dotor; Alfredo García-Layana
The purpose of this study was to assess the effects of transforming growth factor beta (TGF-β) inhibitor peptides (P17 & P144) on early laser-induced choroidal neovascularization (LI-CNV) lesions in rats, two weeks after laser CNV induction. Seventy-one Long Evans rats underwent diode laser application in an established LI-CNV model. Baseline fluorescein angiography (FA) was performed 14 days following laser procedure, and treatments were administered 16 days post-laser application via different administration routes. Intravenous groups included control (IV-Control), P17 (IV-17), and P144 (IV-144) groups, whereas intravitreal groups included P17 (IVT-17), P144 (IVT-144), and a mixture of both peptides (IVT-17+144) (with fellow eyes receiving vehicle alone). CNV evolution was assessed using FA performed weekly for four weeks after treatment. Following sacrifice, VEGF, TGF-β, COX-2, IGF-1, PAI-1, IL-6, MMP-2, MMP-9, and TNF-α gene expression was assessed using RT-PCR. VEGF and p-SMAD2 protein levels were also assessed by western-blot, while MMP-2 activity was assessed with gelatin zymography. Regarding the FA analysis, the mean CNV area was lower from the 3rd week in IVT-17 and IVT-144 groups, and also from the 2nd week in IVT-17+144. Biochemical analysis revealed that gene expression was lower for VEGF and COX-2 genes in IV-17 and IV-144 groups, VEGF gene in IVT-17+144 group and MMP-2 gene in IVT-17 and IVT-144 groups. VEGF protein expression was also decreased in IV-17, IV-144, IVT-17 and IVT-144, whereas pSMAD-2 levels were lower in IV-17, IV-144 and IVT-17+144 groups. Zymogram analysis revealed decreased MMP-2 activity in IV-17, IV-144, IVT-17 and IVT-144 groups. These data suggest that the use of TGF-β inhibitor peptides (P17 & P144) decrease the development of early CNV lesions by targeting different mediators than those typically affected using current anti-angiogenic therapies. Its potential role in the treatment of early CNV appears promising as a single therapy or adjuvant to anti-VEGF drugs.
Nutrients | 2013
Alfredo García-Layana; Sergio Recalde; Angel Salinas Alamán; Patricia Fernández Robredo
We studied the macular pigment ocular density (MPOD) in patients with early age macular degeneration (AMD) before and 1 year after nutritional supplementation with lutein and docosahexaenoic acid (DHA). Forty-four patients with AMD were randomly divided into two groups that received placebo (n = 21) or a nutritional supplement (n = 23, 12 mg of lutein and 280 mg of DHA daily). Heterochromatic flicker photometry was used to determine the MPOD. At baseline, the MPOD in AMD patients with placebo was 0.286 ± 0.017 meanwhile in AMD patients with supplementation it was 0.291 ± 0.016. One year later, the mean MPOD had increased by 0.059 in the placebo group and by 0.162 in patients receiving lutein and DHA. This difference between groups was significant (p < 0.05). Lutein and DHA supplementation is effective in increasing the MPOD and may aid in prevention of age related macular degeneration.
Oxidative Medicine and Cellular Longevity | 2013
Patricia Fernández-Robredo; Luis M. Sádaba; Angel Salinas-Alamán; Sergio Recalde; José Antonio Piqueras Rodríguez; Alfredo García-Layana
Oxidative stress is involved in the pathogenesis of several diseases such as atherosclerosis and age-related macular degeneration (AMD). ApoE-deficient mice (apoE−/−) are a well-established model of genetic hypercholesterolemia and develop retinal alterations similar to those found in humans with AMD. Thus supplementation with lutein or multivitamin plus lutein and glutathione complex (MV) could prevent the onset of these alterations. ApoE−/− mice (n = 40, 3 months old) were treated daily for 3 months with lutein (AE-LUT) or MV (two doses): AE-MV15 (15 mg/kg/day) and AE-MV50 (50 mg/kg/day) and were compared to controls with vehicle (AE-C). Wild-type mice (n = 10) were also used as control (WT-C). ApoE−/− mice showed higher retinal lipid peroxidation and increased VEGF expression and MMP-2 activity, associated with ultrastructural alterations such as basal laminar deposits, vacuoles, and an increase in Bruchs membrane thickness. While lutein alone partially prevented the alterations observed in apoE−/− mice, MV treatment substantially reduced VEGF levels and MMP-2 activity and ameliorated the retinal morphological alterations. These results suggest that oxidative stress in addition to an increased expression and activity of proangiogenic factors could participate in the onset or development of retinal alterations of apoE−/− mice. Moreover, these changes could be prevented by efficient antioxidant treatments.