Sergio Rico
University of Salamanca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergio Rico.
Microbial Cell Factories | 2013
Héctor Rodríguez; Sergio Rico; Margarita Díaz; Ramón I. Santamaría
Streptomyces, the main antibiotic-producing bacteria, responds to changing environmental conditions through a complex sensing mechanism and two-component systems (TCSs) play a crucial role in this extraordinary “sensing” device.Moreover, TCSs are involved in the biosynthetic control of a wide range of secondary metabolites, among them commercial antibiotics. Increased knowledge about TCSs can be a powerful asset in the manipulation of bacteria through genetic engineering with a view to obtaining higher efficiencies in secondary metabolite production. In this review we summarise the available information about Streptomyces TCSs, focusing specifically on their connections to antibiotic production.
PLOS ONE | 2011
Ana Yepes; Sergio Rico; Antonio Rodríguez-García; Ramón I. Santamaría; Margarita Díaz
The abundance of two-component systems (TCSs) in Streptomyces coelicolor A3(2) genome indicates their importance in the physiology of this soil bacteria. Currently, several TCSs have been related to antibiotic regulation, and the purpose in this study was the characterization of five TCSs, selected by sequence homology with the well-known absA1A2 system, that could also be associated with this important process. Null mutants of the five TCSs were obtained and two mutants (ΔSCO1744/1745 and ΔSCO4596/4597/4598) showed significant differences in both antibiotic production and morphological differentiation, and have been renamed as abr (antibiotic regulator). No detectable changes in antibiotic production were found in the mutants in the systems that include the ORFs SCO3638/3639, SCO3640/3641 and SCO2165/2166 in any of the culture conditions assayed. The system SCO1744/1745 (AbrA1/A2) was involved in negative regulation of antibiotic production, and acted also as a negative regulator of the morphological differentiation. By contrast, the system SCO4596/4597/4598 (AbrC1/C2/C3), composed of two histidine kinases and one response regulator, had positive effects on both morphological development and antibiotic production. Microarray analyses of the ΔabrC1/C2/C3 and wild-type transcriptomes revealed downregulation of actII-ORF4 and cdaR genes, the actinorhodin and calcium-dependent antibiotic pathway-specific regulators respectively. These results demonstrated the involvement of these new two-component systems in antibiotic production and morphological differentiation by different approaches. One is a pleiotropic negative regulator: abrA1/A2. The other one is a positive regulator composed of three elements, two histidine kinases and one response regulator: abrC1/C2/C3.
Applied and Environmental Microbiology | 2014
Sergio Rico; Ramón I. Santamaría; Ana Yepes; Héctor Rodríguez; Emma Laing; Giselda Bucca; Colin P. Smith; Margarita Díaz
ABSTRACT The atypical two-component system (TCS) AbrC1/C2/C3 (encoded by SCO4598, SCO4597, and SCO4596), comprising two histidine kinases (HKs) and a response regulator (RR), is crucial for antibiotic production in Streptomyces coelicolor and for morphological differentiation under certain nutritional conditions. In this study, we demonstrate that deletion of the RR-encoding gene, abrC3 (SCO4596), results in a dramatic decrease in actinorhodin (ACT) and undecylprodiginine (RED) production and delays morphological development. In contrast, the overexpression of abrC3 in the parent strain leads to a 33% increase in ACT production in liquid medium. Transcriptomic analysis and chromatin immunoprecipitation with microarray technology (ChIP-chip) analysis of the ΔabrC3 mutant and the parent strain revealed that AbrC3 directly controls ACT production by binding to the actII-ORF4 promoter region; this was independently verified by in vitro DNA-binding assays. This binding is dependent on the sequence 5′-GAASGSGRMS-3′. In contrast, the regulation of RED production is not due to direct binding of AbrC3 to either the redZ or redD promoter region. This study also revealed other members of the AbrC3 regulon: AbrC3 is a positive autoregulator which also binds to the promoter regions of SCO0736, bdtA (SCO3328), absR1 (SCO6992), and SCO6809. The direct targets share the 10-base consensus binding sequence and may be responsible for some of the phenotypes of the ΔabrC3 mutant. The identification of the AbrC3 regulon as part of the complex regulatory network governing antibiotic production widens our knowledge regarding TCS involvement in control of antibiotic synthesis and may contribute to the rational design of new hyperproducer host strains through genetic manipulation of such systems.
PLOS ONE | 2014
Sergio Rico; Ana Yepes; Héctor Rodríguez; Jorge Santamaría; Sergio Antoraz; Eva Krause; Margarita Díaz; Ramón I. Santamaría
The Two-Component System (TCS) AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR) gene in the mutant ΔabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs) or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the ΔabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry.
Frontiers in Microbiology | 2015
Héctor Rodríguez; Sergio Rico; Ana Yepes; Elsa Franco-Echevarría; Sergio Antoraz; Ramón I. Santamaría; Margarita Díaz
Two-component systems (TCSs) are the most important sensing mechanisms in bacteria. In Streptomyces, TCSs-mediated responses to environmental stimuli are involved in the regulation of antibiotic production. This study examines the individual role of two histidine kinases (HKs), AbrC1 and AbrC2, which form part of an atypical TCS in Streptomyces coelicolor. qRT-PCR analysis of the expression of both kinases demonstrated that both are expressed at similar levels in NB and NMMP media. Single deletion of abrC1 elicited a significant increase in antibiotic production, while deletion of abrC2 did not have any clear effect. The origin of this phenotype, probably related to the differential phosphorylation ability of the two kinases, was also explored indirectly, analyzing the toxic phenotypes associated with high levels of phosphorylated RR. The higher the AbrC3 regulator phosphorylation rate, the greater the cell toxicity. For the first time, the present work shows in Streptomyces the combined involvement of two different HKs in the response of a regulator to environmental signals. Regarding the possible applications of this research, the fact that an abrC1 deletion mutant overproduces three of the S. coelicolor antibiotics makes this strain an excellent candidate as a host for the heterologous production of secondary metabolites.
Frontiers in Microbiology | 2017
Sergio Antoraz; Sergio Rico; Héctor Rodríguez; Laura Sevillano; Juan Fernando Alzate; Ramón I. Santamaría; Margarita Díaz
Streptomyces coelicolor, the best-known biological antibiotic producer, encodes 29 predicted orphan response regulators (RR) with a putative role in the response to environmental stimuli. However, their implication in relation to secondary metabolite production is mostly unexplored. Here, we show how the deletion of the orphan RR Aor1 (SCO2281) provoked a drastic decrease in the production of the three main antibiotics produced by S. coelicolor and a delay in morphological differentiation. With the aim to better understand the transcriptional events underpinning these phenotypes, and the global role of Aor1 in Streptomyces, a transcriptional fingerprint of the Δaor1 mutant was compared to a wild-type strain. RNA-Seq analysis revealed that the deletion of this orphan regulator affects a strikingly high number of genes, such as the genes involved in secondary metabolism, which matches the antibiotic production profiles observed. Of particular note, the sigma factor SigB and all of the genes comprising its regulon were up regulated in the mutant. Our results show that this event links osmotic stress to secondary metabolite production in S. coelicolor and indicates that the RR encoded by aor1 could be a key regulator in both of these processes.
PLOS ONE | 2018
Adriana Becerril; Susana Álvarez; Alfredo F. Braña; Sergio Rico; Margarita Díaz; Ramón I. Santamaría; José A. Salas; Carmen Méndez
Sequencing of Streptomyces genomes has revealed they harbor a high number of biosynthesis gene cluster (BGC), which uncovered their enormous potentiality to encode specialized metabolites. However, these metabolites are not usually produced under standard laboratory conditions. In this manuscript we report the activation of BGCs for antimycins, carotenoids, germicidins and desferrioxamine compounds in Streptomyces argillaceus, and the identification of the encoded compounds. This was achieved by following different strategies, including changing the growth conditions, heterologous expression of the cluster and inactivating the adpAa or overexpressing the abrC3 global regulatory genes. In addition, three new carotenoid compounds have been identified.
Fems Microbiology Letters | 2013
Margarita Díaz; Laura Sevillano; Sergio Rico; Felipe Lombó; Alfredo F. Braña; José A. Salas; Carmen Méndez; Ramón I. Santamaría
Archive | 2017
Sergio Antoraz; Sergio Rico; Héctor Rodríguez; Margarita Díaz; Ramón I. Santamaría
Archive | 2014
Sergio Rico; Ana Yepes; Héctor Rodríguez; Jorge Santamaría; Sergio Antoraz; Margarita Díaz; Ramón I. Santamaría