Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergio Valente is active.

Publication


Featured researches published by Sergio Valente.


Cell Stem Cell | 2010

TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration.

Daniela Palacios; Chiara Mozzetta; Silvia Consalvi; Giuseppina Caretti; Valentina Saccone; Valentina Proserpio; Victor E. Marquez; Sergio Valente; Antonello Mai; Sonia V. Forcales; Vittorio Sartorelli; Pier Lorenzo Puri

How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.


Journal of the American Chemical Society | 2010

Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2

Claudia Binda; Sergio Valente; Mauro Romanenghi; Simona Pilotto; Roberto Cirilli; Aristotele Karytinos; Giuseppe Ciossani; Oronza A. Botrugno; Federico Forneris; Maria Tardugno; Dale E. Edmondson; Saverio Minucci; Andrea Mattevi; Antonello Mai

LSD1 and LSD2 histone demethylases are implicated in a number of physiological and pathological processes, ranging from tumorigenesis to herpes virus infection. A comprehensive structural, biochemical, and cellular study is presented here to probe the potential of these enzymes for epigenetic therapies. This approach employs tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. This drug is a clinically validated antidepressant known to target monoamine oxidases A and B. These two flavoenzymes are structurally related to LSD1 and LSD2. Mechanistic and crystallographic studies of tranylcypromine inhibition reveal a lack of selectivity and differing covalent modifications of the FAD cofactor depending on the enantiomeric form. These findings are pharmacologically relevant, since tranylcypromine is currently administered as a racemic mixture. A large set of tranylcypromine analogues were synthesized and screened for inhibitory activities. We found that the common evolutionary origin of LSD and MAO enzymes, despite their unrelated functions and substrate specificities, is reflected in related ligand-binding properties. A few compounds with partial enzyme selectivity were identified. The biological activity of one of these new inhibitors was evaluated with a cellular model of acute promyelocytic leukemia chosen since its pathogenesis includes aberrant activities of several chromatin modifiers. Marked effects on cell differentiation and an unprecedented synergistic activity with antileukemia drugs were observed. These data demonstrate that these LSD1/2 inhibitors are of potential relevance for the treatment of promyelocytic leukemia and, more generally, as tools to alter chromatin state with promise of a block of tumor progression.


Diabetes | 2013

Inhibition of Class I Histone Deacetylases Unveils a Mitochondrial Signature and Enhances Oxidative Metabolism in Skeletal Muscle and Adipose Tissue

Andrea Galmozzi; Nico Mitro; Alessandra Ferrari; E. Gers; Federica Gilardi; Cristina Godio; Gaia Cermenati; Alice Gualerzi; Elena Donetti; Dante Rotili; Sergio Valente; Donatella Caruso; Antonello Mai; Enrique Saez; Emma De Fabiani; Maurizio Crestani

Chromatin modifications are sensitive to environmental and nutritional stimuli. Abnormalities in epigenetic regulation are associated with metabolic disorders such as obesity and diabetes that are often linked with defects in oxidative metabolism. Here, we evaluated the potential of class-specific synthetic inhibitors of histone deacetylases (HDACs), central chromatin-remodeling enzymes, to ameliorate metabolic dysfunction. Cultured myotubes and primary brown adipocytes treated with a class I–specific HDAC inhibitor showed higher expression of Pgc-1α, increased mitochondrial biogenesis, and augmented oxygen consumption. Treatment of obese diabetic mice with a class I– but not a class II–selective HDAC inhibitor enhanced oxidative metabolism in skeletal muscle and adipose tissue and promoted energy expenditure, thus reducing body weight and glucose and insulin levels. These effects can be ascribed to increased Pgc-1α action in skeletal muscle and enhanced PPARγ/PGC-1α signaling in adipose tissue. In vivo ChIP experiments indicated that inhibition of HDAC3 may account for the beneficial effect of the class I–selective HDAC inhibitor. These results suggest that class I HDAC inhibitors may provide a pharmacologic approach to treating type 2 diabetes.


Journal of Medicinal Chemistry | 2008

epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors.

Antonello Mai; Donghang Cheng; Mark T. Bedford; Sergio Valente; Angela Nebbioso; Andrea Perrone; Gerald Brosch; Gianluca Sbardella; Floriana De Bellis; Marco Miceli; Lucia Altucci

A number of new compounds bearing two ortho-bromo- and ortho, ortho-dibromophenol moieties linked through a saturated/unsaturated, linear/(poly)cyclic spacer (compounds 1- 9) were prepared as simplified analogues of AMI-5 (eosin), a recently reported inhibitor of both protein arginine and histone lysine methyltransferases (PRMTs and HKMTs). Such compounds were tested against a panel of PRMTs (RmtA, PRMT1, and CARM1) and against human SET7 (a HKMT), using histone and nonhistone proteins as a substrate. They were also screened against HAT and SIRTs, because they are structurally related to some HAT and/or SIRT modulators. From the inhibitory data, some of tested compounds ( 1b, 1c, 4b, 4f, 4j, 4l, 7b, and 7f) were able to inhibit PRMTs, HKMT, HAT, and SIRTs with similar potency, thus behaving as multiple ligands for these epigenetic targets (epi-MLs). When tested on the human leukemia U937 cell line, the epi-MLs induced high apoptosis levels [i.e., 40.7% ( 4l) and 42.6% ( 7b)] and/or massive, dose-dependent cytodifferentiation [i.e., 95.2% ( 1c) and 96.1% ( 4j)], whereas the single-target inhibitors eosin, curcumin, and sirtinol were ineffective or showed a weak effect.


International Journal of Molecular Sciences | 2013

Oxidative Stress and Epigenetic Regulation in Ageing and Age-Related Diseases

Chiara Cencioni; Francesco Spallotta; Fabio Martelli; Sergio Valente; Antonello Mai; Andreas M. Zeiher; Carlo Gaetano

Recent statistics indicate that the human population is ageing rapidly. Healthy, but also diseased, elderly people are increasing. This trend is particularly evident in Western countries, where healthier living conditions and better cures are available. To understand the process leading to age-associated alterations is, therefore, of the highest relevance for the development of new treatments for age-associated diseases, such as cancer, diabetes, Alzheimer and cardiovascular accidents. Mechanistically, it is well accepted that the accumulation of intracellular damage determined by reactive oxygen species (ROS) might orchestrate the progressive loss of control over biological homeostasis and the functional impairment typical of aged tissues. Here, we review how epigenetics takes part in the control of stress stimuli and the mechanisms of ageing physiology and physiopathology. Alteration of epigenetic enzyme activity, histone modifications and DNA-methylation is, in fact, typically associated with the ageing process. Specifically, ageing presents peculiar epigenetic markers that, taken altogether, form the still ill-defined “ageing epigenome”. The comprehension of mechanisms and pathways leading to epigenetic modifications associated with ageing may help the development of anti-ageing therapies.


EMBO Reports | 2009

Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC–MEF2 complexes

Angela Nebbioso; Fabio Manzo; Marco Miceli; Mariarosaria Conte; Lucrezia Manente; Alfonso Baldi; Antonio De Luca; Dante Rotili; Sergio Valente; Antonello Mai; Alessandro Usiello; Hinrich Gronemeyer; Lucia Altucci

Histone deacetylase (HDAC) inhibitors are promising new epi‐drugs, but the presence of both class I and class II enzymes in HDAC complexes precludes a detailed elucidation of the individual HDAC functions. By using the class II‐specific HDAC inhibitor MC1568, we separated class I‐ and class II‐dependent effects and defined the roles of class II enzymes in muscle differentiation in cultured cells and in vivo. MC1568 arrests myogenesis by (i) decreasing myocyte enhancer factor 2D (MEF2D) expression, (ii) by stabilizing the HDAC4–HDAC3–MEF2D complex, and (iii) paradoxically, by inhibiting differentiation‐induced MEF2D acetylation. In vivo MC1568 shows an apparent tissue‐selective HDAC inhibition. In skeletal muscle and heart, MC1568 inhibits the activity of HDAC4 and HDAC5 without affecting HDAC3 activity, thereby leaving MEF2–HDAC complexes in a repressed state. Our results suggest that HDAC class II‐selective inhibitors might have a therapeutic potential for the treatment of muscle and heart diseases.


Circulation Research | 2008

Nitric Oxide Modulates Chromatin Folding in Human Endothelial Cells via Protein Phosphatase 2A Activation and Class II Histone Deacetylases Nuclear Shuttling

Barbara Illi; Claudio Dello Russo; Claudia Colussi; Jessica Rosati; Michele Pallaoro; Francesco Spallotta; Dante Rotili; Sergio Valente; Gianluca Ragone; Fabio Martelli; Paolo Biglioli; Christian Steinkühler; Paola Gallinari; Antonello Mai; Maurizio C. Capogrossi; Carlo Gaetano

Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27–275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation.


Molecular Cancer Research | 2008

Specific Activity of Class II Histone Deacetylases in Human Breast Cancer Cells

Vanessa Duong; Caroline Bret; Lucia Altucci; Antonello Mai; Céline Duraffourd; Julie Loubersac; Pierre Olivier Harmand; Sandrine Bonnet; Sergio Valente; Thierry Maudelonde; Vincent Cavaillès; Nathalie Boulle

Although numerous studies have underlined the role of histone deacetylases (HDAC) in breast physiology and tumorigenesis, little is known on the particular contribution of the various classes of HDACs in these processes. Using estrogen receptor-α (ERα)–positive MCF-7 breast cancer cells, the effects of MC1575 and MC1568, two novel class II–specific HDAC inhibitors, were analyzed on cell proliferation, apoptosis, and estrogen signaling. The specificity of these HDAC inhibitors was validated by measuring histone and α-tubulin acetylation and by the specific in vitro inhibition of recombinant HDAC4 using histone and nonhistone substrates, contrasting with the lack of inhibition of class I HDACs. In addition, MC1575 did not inhibit class I HDAC gene expression, thus confirming the specific targeting of class II enzymes. Similar to trichostatin A (TSA), MC1575 displayed a dose-dependent antiproliferative effect and induced cell cycle arrest although this blockade occurred at a different level than TSA. Moreover, and in contrast to TSA, MC1575 had no effect on MCF-7 cells apoptosis. Interestingly, MC1575 was able to increase p21waf1/CIP1 mRNA levels but did not regulate the expression of other genes such as cyclin D1, p27, p14ARF, Bcl2, Baxα, Trail-R1, and Trail-R2. Finally, MC1575 strongly induced ERβ gene expression but did not decrease ERα expression, nor did it switch hydroxytamoxifen to an agonist activity. Altogether, these data suggest that the class II HDAC subfamily may exert specific roles in breast cancer progression and estrogen dependence. (Mol Cancer Res 2008;6(12):1908–19)


Current Pharmaceutical Design | 2009

Histone Deacetylase Inhibitors and Neurodegenerative Disorders: Holding the Promise

Antonello Mai; Dante Rotili; Sergio Valente; Aleksey G. Kazantsev

Neurodegenerative disorders (NDs) such as Huntingtons disease, Alzheimers disease, Parkinson disease, amyotrophic lateral sclerosis, spinal muscular atrophy, Friedreichs ataxia, and others are multi-factorial illnesses, in which many pathways (still poorly understood) act serially and in parallel to give a determined pathologic phenotype. Thus, presently there are no effective cures for these diseases. Some phenotypic as well as mechanistic features, common to the most of NDs, can be linked to epigenetic defects, that can lead to alteration of acetylation homeostasis and impairment of the histone acetyltransferase (HAT): histone deacetylase (HDAC) balance. Here we survey most of the recent applications of HDAC inhibitors in the cited NDs, and we make the point of our (up to now) knowledge about the involvement of singular HDAC/SIRT isoform in NDs and other CNS pathologies.


Journal of Medicinal Chemistry | 2004

3-(4-Aroyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamides as a New Class of Synthetic Histone Deacetylase Inhibitors. 2. Effect of Pyrrole-C2 and/or -C4 Substitutions on Biological Activity

Antonello Mai; Silvio Massa; Ilaria Cerbara; Sergio Valente; Rino Ragno; Patrizia Bottoni; Roberto Scatena; Peter Loidl; Gunther Brosch

Previous SAR studies (Part 1: Mai, A.; et al. J. Med. Chem. 2003, 46, 512-524) performed on some portions (pyrrole-C4, pyrrole-N1, and hydroxamate group) of 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1a) highlighted its 4-phenylacetyl (1b) and 4-cynnamoyl (1c) analogues as more potent compounds in inhibiting maize HD2 activity in vitro. In the present paper, we investigated the effect on anti-HD2 activity of chemical substitutions performed on the pyrrole-C2 ethene chains of 1a-c, which were replaced with methylene, ethylene, substituted ethene, and 1,3-butadiene chains (compounds 2). Biological results clearly indicated the unsubstituted ethene chain as the best structural motif to get the highest HDAC inhibitory activity, the sole exception to this rule being the introduction of the 1,3-butadienyl moiety into the 1a chemical structure (IC50(2f) = 0.77 microM; IC50(1a) = 3.8 microM). IC50 values of compounds 3, prepared as 1b homologues, revealed that between benzene and carbonyl groups at the pyrrole-C(4) position a hydrocarbon spacer length ranging from two to five methylenes is well accepted by the APHA template, being that 3a (two methylenes) and 3d (five methylenes) are more potent (2.3- and 1.4-fold, respectively) than 1b, while the introduction of a higher number of methylene units (see 3e,f) decreased the inhibitory activities of the derivatives. Particularly, 3a (IC50 = 0.043 microM) showed the same potency as SAHA in inhibiting HD2 in vitro, and it was 3000- and 2.6-fold more potent than sodium valproate and HC-toxin and was 4.3- and 6-fold less potent than trapoxin and TSA, respectively. Finally, conformationally constrained forms of 1b,c (compounds 4), prepared with the aim to obtain some information potentially useful for a future 3D-QSAR study, showed the same (4a,b) or higher (4c,d) HD2 inhibiting activities in comparison with those of the reference drugs. Molecular modeling and docking calculations on the designed compounds performed in parallel with the chemistry work fully supported the synthetic effort and gave insights into the binding mode of the more flexible APHA derivatives (i.e., 3a). Despite the difference of potency between 1b and 3a in the enzyme assay, the two APHA derivatives showed similar antiproliferative and cytodifferentiating activities in vivo on Friends MEL cells, being that 3a is more potent than 1b in the differentiation assay only at the highest tested dose (48 microM).

Collaboration


Dive into the Sergio Valente's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clemens Zwergel

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Lucia Altucci

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Dante Rotili

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Angela Nebbioso

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Giulia Stazi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Biagina Marrocco

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge