Sergios Charntikov
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergios Charntikov.
Hippocampus | 2012
Sergio D. Iñiguez; Sergios Charntikov; Shelley A. Baella; Matthew S. Herbert; Carlos A. Bolaños-Guzmán; Cynthia A. Crawford
In this study, we examined the ability of post‐training injections of cocaine to facilitate spatial memory performance using the Morris water maze (MWM). We also investigated the role that hippocampal protein kinase A (PKA) and extracellular signal‐regulated kinase 1/2 (ERK) signaling may play in cocaine‐mediated spatial memory consolidation processes. Male and female C57BL/6 mice were first trained in a MWM task (eight consecutive trials) then injected with cocaine (0, 1.25, 2.5, 5, or 20 mg/kg), and memory for the platform location was retested after a 24 h delay. Cocaine had a dose‐dependent effect on spatial memory performance because only the mice receiving 2.5 mg/kg cocaine displayed a significant reduction in latency to locate the platform. No sex differences in MWM performance were observed; however, females showed higher hippocampal levels of PKA when compared with males. A second experiment demonstrated that 2.5 mg/kg cocaine enhanced MWM performance only when administered within 2, but not 4 h after spatial training. We also found that cocaine (2.5 mg/kg) increased ERK2 phosphorylation within the hippocampus and one of its downstream targets (ribosomal S6 kinase), a mechanism that may be responsible, at least in part, for the enhanced cocaine‐mediated spatial memory performance. Overall, these data demonstrate that a low dose of cocaine (2.5 mg/kg) administered within 2 h after training facilitates MWM spatial memory performance in C57BL/6 mice.
Neuroscience | 2011
Sergios Charntikov; Taleen Der-Ghazarian; Matthew S. Herbert; L.R. Horn; C.B. Widarma; A. Gutierrez; Fausto A. Varela; Sanders A. McDougall
Dopaminergic compounds often affect the unlearned behaviors of preweanling and adult rats differently, although the brain regions underlying these age-dependent behavioral effects have not been specified. A candidate brain region is the dorsal caudate-putamen (CPu); thus, a goal of the present study was to determine whether D1 and D2 receptors in the dorsal CPu are capable of modulating the unlearned behaviors of preweanling rats. In Experiments 1 and 2, selective and nonselective dopamine agonists were bilaterally microinjected into the dorsal CPu on postnatal day (PD) 18 and both locomotor activity and stereotypy were measured. In Experiment 3, the functional coupling of D1 and D2 receptors was assessed by microinjecting the D1 agonist SKF-82958 and the D₂/D₃ agonist quinpirole either alone or in combination. In Experiments 4 and 5, quinpirole and the D1 receptor antagonist SCH-23390, or SKF-82958 and the D2 receptor antagonist raclopride, were co-administered into the dorsal CPu to further assess whether a functional D1 or D2 receptor system is necessary for the expression of quinpirole- or SKF-82958-induced behaviors. Results showed that selective stimulation of D1 or D2 receptors in the dorsal CPu increased both the locomotor activity and stereotypy of preweanling rats. Receptor coupling was evident on PD 18 because co-administration of a subthreshold dose of SKF-82958 and quinpirole produced more locomotor activity than either agonist alone. Lastly, the dopamine antagonist experiments showed that both D1 and D2 receptor systems must be functional for SKF-82958- or quinpirole-induced locomotor activity to be fully manifested. When the present data are compared to results from non-ontogenetic studies, it appears that pharmacological manipulation of D1 and D2 receptors in the dorsal CPu affects the behavior of preweanling and adult rats in a generally similar manner, although some important age-dependent differences are apparent. For example, D1 and/or D2 agonists preferentially induce locomotor activity, and not intense stereotypy, in younger animals.
Neuroscience | 2012
Taleen Der-Ghazarian; A. Gutierrez; Fausto A. Varela; Matthew S. Herbert; L.R. Amodeo; Sergios Charntikov; Cynthia A. Crawford; Sanders A. McDougall
The irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) has been used to study the ontogeny of dopamine (DA) receptor functioning in young and adult rats. Most notably, systemic administration of EEDQ blocks the DA agonist-induced behaviors of adult rats, while leaving the behavior of preweanling rats unaffected. The purpose of the present study was to: (a) determine whether the age-dependent actions of EEDQ involve receptors located in the dorsal caudate-putamen (CPu) and (b) confirm that EEDQs behavioral effects result from the inactivation of DA receptors rather than some other receptor type. In Experiment 1, EEDQ or DMSO was bilaterally infused into the CPu on PD 17 or PD 84. After 24h, rats were given bilateral microinjections of the full DA agonist R(-)-propylnorapomorphine (NPA) or vehicle into the dorsal CPu and behavior was assessed for 40 min. In Experiment 2, preweanling rats were treated as just described, except that DA receptors were protected from EEDQ-induced alkylation by administering systemic injections of D1 (SCH23390) and D2 (sulpiride) receptor antagonists. As predicted, microinjecting EEDQ into the dorsal CPu attenuated the NPA-induced locomotor activity and stereotypy of adult rats. In contrast, rats given bilateral EEDQ infusions on PD 17 exhibited a potentiated locomotor response when treated with NPA. Experiment 2 showed that DA receptor inactivation was responsible for NPAs actions. A likely explanation for these results is that EEDQ inactivates a sizable percentage of DA receptors on PD 17, but leaves the remaining receptors in a supersensitive state. This receptor supersensitivity, which probably involves alterations in G protein coupling, could account for NPA-induced locomotor potentiation. It is likely that adult rats to not show a similar EEDQ-induced change in receptor dynamics or DA receptor inactivation was more complete in older animals and effectively eliminated the expression of DA agonist-induced behaviors.
Neuropharmacology | 2013
Sergios Charntikov; Natashia Swalve; Steven T. Pittenger; K. Fink; S. Schepers; G. C. Hadlock; Annette E. Fleckenstein; Gang Hu; Ming Li; Rick A. Bevins
Iptakalim is an ATP-sensitive potassium channel opener, as well as an α4β2-containing nicotinic acetylcholine receptor (nAChR) antagonist. Pretreatment with iptakalim diminishes nicotine-induced dopamine (DA) and glutamate release in the nucleus accumbens. This neuropharmacological profile suggests that iptakalim may be useful for treatment of nicotine dependence. Thus, we examined the effects of iptakalim in two preclinical models. First, the impact of iptakalim on the interoceptive stimulus effect of nicotine was evaluated by training rats in a discriminated goal-tracking task that included intermixed nicotine (0.4 mg/kg, SC) and saline sessions. Sucrose was intermittently presented in a response-independent manner only on nicotine sessions. On intervening test days, rats were pretreated with iptakalim (10, 30, 60 mg/kg, IP). Results revealed that iptakalim attenuated nicotine-evoked responding controlled by the nicotine stimulus in a dose-dependent manner. In a separate study, the impact of iptakalim on the reinforcing effects of nicotine was investigated by training rats to lever-press to self-administer nicotine (0.01 mg/kg/infusion) [Dosage error corrected]. Results revealed that pretreatment with iptakalim (1, 3, 6 mg/kg, IV) decreased nicotine intake (i.e., less active lever responding). Neither behavioral effect was due to a non-specific motor effect of iptakalim, nor to an ability of iptakalim to inhibit DA transporter (DAT) or serotonin transporter (SERT) function. Together, these finding support the notion that iptakalim may be an effective pharmacotherapy for increasing smoking cessation and a better understanding of its action could contribute to medication development.
Drug and Alcohol Dependence | 2015
Sergios Charntikov; Steven T. Pittenger; Ishwor Thapa; Dhundy Bastola; Rick A. Bevins; Gurudutt Pendyala
BACKGROUND Chronic methamphetamine intake has been shown to induce a neuroinflammatory state leading to significant changes in brain functioning including behavioral changes. These changes can persist for years after drug use is discontinued and likely contribute to the risk of relapse. A better understanding of inflammation responses associated with methamphetamine intake may help in designing novel and more efficacious treatment strategies. METHODS Rats were trained to self-administer methamphetamine or saline on a variable ratio 3 schedule of reinforcement (25 days). This training was followed by 12 days of extinction (i.e., methamphetamine unavailable) during which rats received daily post-session administration of ibudilast (AV411; 2.5 or 7.5mg/kg) or saline. Following extinction, synaptosomes were isolated from the prefrontal cortex (PFC) and the differential pattern of synaptic proteins was assessed using mass spectrometry based proteomics. RESULTS Treatment with ibudilast allowed for deeper extinction of active lever pressing. Quantitative mass spectrometry based proteomics on the PFC identified one potential hit; the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (PEBP1). While methamphetamine intake was associated with reduced PEBP1 protein levels, treatment with ibudilast reversed this effect. Furthermore, decreased PEBP1 expression was correlated with subsequent activation of Raf-1, MEK, and ERK signaling components of the mitogen-activated protein kinase cascade (MAPK). Raf-1, MEK, and ERK expression levels were also attenuated by ibudilast treatment. CONCLUSION PEBP1, given its synaptic localization and its role as a signaling molecule acting via the ERK/MAPK pathway, could be a potential therapeutic target mediating drug-seeking behaviors associated with neuroinflammation.
Journal of Psychopharmacology | 2014
Fausto A. Varela; Taleen Der-Ghazarian; Ryan J. Lee; Sergios Charntikov; Cynthia A. Crawford; Sanders A. McDougall
Aripiprazole is a second-generation antipsychotic that is increasingly being prescribed to children and adolescents. Despite this trend, little preclinical research has been done on the neural and behavioral actions of aripiprazole during early development. In the present study, young male and female Sprague-Dawley rats were pretreated with vehicle, haloperidol (1 mg/kg), or aripiprazole (10 mg/kg) once daily on postnatal days (PD) 10–20. After 1, 4, or 8 days (i.e. on PD 21, PD 24, or PD 28), amphetamine-induced locomotor activity and stereotypy, as well as dorsal striatal D2 receptor levels, were measured in separate groups of rats. Pretreating young rats with aripiprazole or haloperidol increased D2 binding sites in the dorsal striatum. Consistent with these results, dopamine supersensitivity was apparent when aripiprazole- and haloperidol-pretreated rats were given a test day injection of amphetamine (2 or 4 mg/kg). Increased D2 receptor levels and altered behavioral responding persisted for at least 8 days after conclusion of the pretreatment regimen. Contrary to what has been reported in adults, repeated aripiprazole treatment caused D2 receptor up-regulation and persistent alterations of amphetamine-induced behavior in young rats. These findings are consistent with human clinical studies showing that children and adolescents are more prone than adults to aripiprazole-induced side effects, including extrapyramidal symptoms.
Neuropsychopharmacology | 2012
Sergios Charntikov; Matthew Tracy; Changjiu Zhao; Ming Li; Rick A. Bevins
Nicotine has both unconditioned and conditioned stimulus properties. Conditioned stimulus properties of nicotine may contribute to the tenacity of nicotine addiction. The purpose of this experiment was to use neurohistochemical analysis of rapidly developing c-Fos protein to elucidate neurobiological loci involved in the processing of nicotine as an interoceptive conditioned stimulus (CS). Rats were injected (SC) in an intermixed fashion with saline or nicotine (16 sessions of each) and placed in conditioning chambers where they were given one of the three conditions depending on group assignment: (a) nicotine paired 100% of the time with intermittent access to sucrose (nicotine-CS condition), (b) nicotine and saline each paired 50% of the time with sucrose (chamber-CS condition), or (c) no sucrose US control (CS-alone condition). Rats in the nicotine-CS condition acquired the discrimination as evidenced by goal-tracking (ie, increased dipper entries before initial sucrose delivery) only on nicotine sessions. The chamber-CS condition showed goal-tracking on all sessions; no goal-tracking was seen in the CS-alone condition. On the test day, rats in each condition were challenged with saline or nicotine and later assessed for c-Fos immunoreactivity. In concordance with previous reports, nicotine induced c-Fos expression in the majority of areas tested; however, learning-dependent expression was specific to dorsomedial and ventromedial regions of caudate-putamen (dmCPu, vmCPu). Only rats in the nicotine-CS condition, when challenged with nicotine, had higher c-Fos expression in the dmCPu and vmCPu. These results suggest that medial areas of CPu involved in excitatory conditioning with an appetitive nicotine CS.
Synapse | 2011
Cynthia A. Crawford; Garnik Akopian; Justin Ring; Michael W. Jakowec; Giselle M. Petzinger; Julie K. Andersen; Philip Vittozzi-Wong; Kristie Wang; Cristal M. Farley; Sergios Charntikov; Danut Mitroi; M. Flint Beal; Robert H. Chow; John P. Walsh
The goal of the present investigation was to determine the persistence of striatal (DA) dopaminergic dysfunction after a mild chemically induced hypoxic event in Fisher 344 rats. To this end, we gave a single injection of the mitochondrial complex II inhibitor 3‐nitropropionic acid (3‐NP; 16.5 mg/kg, i.p.) to 2‐month old male F344 rats and measured various indices of striatal DA functioning and lipid peroxidation over a 3‐month span. Separate groups of rats were used to measure rod walking, evoked DA release, DA content, malondialdehyde (MDA) accumulation, DA receptor binding, and tyrosine hydroxylase (TH) activity. The results showed that 3‐NP exposure reduced most measures of DA functioning including motoric ability, DA release, and D2 receptor densities for 1 to 3 months postdrug administration. Interestingly, DA content was reduced 1 week after 3‐NP exposure, but rose to 147% of control values 1 month after 3‐NP treatment. MDA accumulation, a measure of lipid peroxidation activity, was increased 24 h and 1 month after 3‐NP treatment. 3‐NP did not affect TH activity, suggesting that alterations in DA functioning were not the result of nigrostriatal terminal loss. These data demonstrate that a brief mild hypoxic episode caused by 3‐NP exposure has long‐term detrimental effects on the functioning of the nigrostriatal DA system. Synapse, 2011.
Neuroscience | 2010
A.M. Cortez; Sergios Charntikov; Taleen Der-Ghazarian; L.R. Horn; Cynthia A. Crawford; Sanders A. McDougall
kappa-Opioid receptor stimulation attenuates psychostimulant-induced increases in extracellular dopamine in the caudate-putamen (CPu) and nucleus accumbens of adult rats, while reducing cocaine-induced locomotor activity and stereotyped behaviors. Because kappa-opioid receptor agonists (e.g., U50,488 or U69,593) often affect the behavior of preweanling rats in a paradoxical manner, the purpose of the present study was to determine whether kappa-opioid receptor stimulation differentially affects dopaminergic functioning in the CPu depending on age. In vivo microdialysis was used to determine whether U50,488 (5 mg/kg) attenuates cocaine-induced dopamine overflow in the dorsal CPu on postnatal day (PD) 17 and PD 85. In the microinjection experiment, cocaine-induced stereotyped behaviors were assessed in adult and preweanling rats after bilateral infusions of vehicle or U50,488 (1.6 or 6.4 microg per side) into the CPu. Results showed that U50,488 attenuated the cocaine-induced increases in CPu dopamine overflow on PD 85, while the same dose of U50,488 did not alter dopamine dialysate levels on PD 17. Cocaine also increased stereotyped behaviors (repetitive motor movements, behavioral intensity scores, and discrete behaviors) at both ages, but adult rats appeared to exhibit more intense stereotypic responses than the younger animals. Consistent with the microdialysis findings, bilateral infusions of U50,488 into the dorsal CPu decreased the cocaine-induced stereotypies of adult rats, while leaving the behaviors of preweanling rats unaffected. These results suggest that the neural mechanisms underlying kappa-opioid/dopamine interactions in the CPu are not fully mature during the preweanling period. This lack of functional maturity may explain why kappa-opioid receptor agonists frequently induce different behavioral effects in young and adult rats.
Neuroscience | 2008
Sergios Charntikov; Lindsay R. Halladay; Matthew S. Herbert; E.M. Marquez; Sanders A. McDougall
Stimulation of kappa-opioid receptors in the substantia nigra pars reticulata (SNPR) increases the locomotor activity of young rats: an effect blocked by systemic administration of a D2-like receptor agonist. Based on these initial findings, we proposed that: (a) D2-like receptors in the dorsal striatum are responsible for attenuating kappa-opioid-induced locomotor activity, and (b) the effects of D2-like receptor stimulation are mediated by the indirect pathway, which extends from the dorsal striatum to the SNPR via the globus pallidus (GP) and subthalamic nucleus (STN). To test the first hypothesis, young rats were given a systemic injection (i.p.) of saline or the kappa-opioid receptor agonist (+/-)-trans-U50,488 methanesulfonate salt (U50,488) on postnatal day (PD) 18. Later in the testing session, rats received bilateral infusions of vehicle or the D2-like receptor agonist R(-)-propylnorapomorphine (NPA) into the dorsal striatum, and the ability of NPA to block U50,488-induced locomotor activity was determined. To test the second hypothesis, rats were given sham or bilateral electrolytic lesions of the GP or STN on PD 16. Two days later, saline- and U50,488-induced locomotor activity was measured after systemic (i.p.) administration of vehicle or NPA. As predicted, dorsal striatal infusions of NPA attenuated the U50,488-induced locomotor activity of young rats. Contrary to our expectations, bilateral lesions of the GP or STN did not impair NPAs ability to block U50,488-induced locomotor activity. When considered together, these results suggest that: (a) stimulation of D2-like receptors in the dorsal striatum is sufficient to attenuate the kappa-opioid-mediated locomotor activity of young rats; and (b) the indirect pathway does not mediate the effects of D2-like receptor stimulation in this behavioral model.