Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergiy M. Nadtochiy is active.

Publication


Featured researches published by Sergiy M. Nadtochiy.


Nature | 2014

Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS

Edward T. Chouchani; Victoria R. Pell; Edoardo Gaude; Dunja Aksentijevic; Stephanie Y. Sundier; Ellen L. Robb; Angela Logan; Sergiy M. Nadtochiy; Emily N. J. Ord; Anthony C. Smith; Filmon Eyassu; Rachel Shirley; Chou-Hui Hu; Anna J Dare; Andrew M. James; Sebastian Rogatti; Richard C. Hartley; Simon Eaton; Ana S.H. Costa; Paul S. Brookes; Sean M. Davidson; Michael R. Duchen; Kourosh Saeb-Parsy; Michael J. Shattock; Alan J. Robinson; Lorraine M. Work; Christian Frezza; Thomas Krieg; Michael P. Murphy

Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.


Nature Medicine | 2013

Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I

Edward T. Chouchani; Carmen Methner; Sergiy M. Nadtochiy; Angela Logan; Victoria R. Pell; Shujing Ding; Andrew M. James; Helena M. Cochemé; Johannes Reinhold; Kathryn S. Lilley; Linda Partridge; Ian M. Fearnley; Alan J. Robinson; Richard C. Hartley; Robin A. J. Smith; Thomas Krieg; Paul S Brookes; Michael P. Murphy

Oxidative damage from elevated production of reactive oxygen species (ROS) contributes to ischemia-reperfusion injury in myocardial infarction and stroke. The mechanism by which the increase in ROS occurs is not known, and it is unclear how this increase can be prevented. A wide variety of nitric oxide donors and S-nitrosating agents protect the ischemic myocardium from infarction, but the responsible mechanisms are unclear. Here we used a mitochondria-selective S-nitrosating agent, MitoSNO, to determine how mitochondrial S-nitrosation at the reperfusion phase of myocardial infarction is cardioprotective in vivo in mice. We found that protection is due to the S-nitrosation of mitochondrial complex I, which is the entry point for electrons from NADH into the respiratory chain. Reversible S-nitrosation of complex I slows the reactivation of mitochondria during the crucial first minutes of the reperfusion of ischemic tissue, thereby decreasing ROS production, oxidative damage and tissue necrosis. Inhibition of complex I is afforded by the selective S-nitrosation of Cys39 on the ND3 subunit, which becomes susceptible to modification only after ischemia. Our results identify rapid complex I reactivation as a central pathological feature of ischemia-reperfusion injury and show that preventing this reactivation by modification of a cysteine switch is a robust cardioprotective mechanism and hence a rational therapeutic strategy.


Biochemical Journal | 2006

Direct evidence for S-nitrosation of mitochondrial complex I.

Lindsay S. Burwell; Sergiy M. Nadtochiy; Andrew J. Tompkins; Sara Young; Paul S. Brookes

NO* (nitric oxide) is a pleiotropic signalling molecule, with many of its effects on cell function being elicited at the level of the mitochondrion. In addition to the well-characterized binding of NO* to the Cu(B)/haem-a3 site in mitochondrial complex IV, it has been proposed by several laboratories that complex I can be inhibited by S-nitrosation of a cysteine. However, direct molecular evidence for this is lacking. In this investigation we have combined separation techniques for complex I (blue-native gel electrophoresis, Superose 6 column chromatography) with sensitive detection methods for S-nitrosothiols (chemiluminescence, biotin-switch assay), to show that the 75 kDa subunit of complex I is S-nitrosated in mitochondria treated with S-nitrosoglutathione (10 microM-1 mM). The stoichiometry of S-nitrosation was 7:1 (i.e. 7 mol of S-nitrosothiols per mol of complex I) and this resulted in significant inhibition of the complex. Furthermore, S-nitrosothiols were detected in mitochondria isolated from hearts subjected to ischaemic preconditioning. The implications of these results for the physiological regulation of respiration, for reactive oxygen species generation and for a potential role of S-nitrosation in cardioprotection are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury

Tracy A. Prime; Frances H. Blaikie; Cameron Evans; Sergiy M. Nadtochiy; Andrew M. James; Christina C. Dahm; Dario A. Vitturi; Rakesh P. Patel; C. Robin Hiley; Irina Abakumova; Raquel Requejo; Edward T. Chouchani; Thomas R. Hurd; John F. Garvey; Cormac T. Taylor; Paul S. Brookes; Robin A. J. Smith; Michael P. Murphy

Nitric oxide (NO•) competitively inhibits oxygen consumption by mitochondria at cytochrome c oxidase and S-nitrosates thiol proteins. We developed mitochondria-targeted S-nitrosothiols (MitoSNOs) that selectively modulate and protect mitochondrial function. The exemplar MitoSNO1, produced by covalently linking an S-nitrosothiol to the lipophilic triphenylphosphonium cation, was rapidly and extensively accumulated within mitochondria, driven by the membrane potential, where it generated NO• and S-nitrosated thiol proteins. MitoSNO1-induced NO• production reversibly inhibited respiration at cytochrome c oxidase and increased extracellular oxygen concentration under hypoxic conditions. MitoSNO1 also caused vasorelaxation due to its NO• generation. Infusion of MitoSNO1 during reperfusion was protective against heart ischemia-reperfusion injury, consistent with a functional modification of mitochondrial proteins, such as complex I, following S-nitrosation. These results support the idea that selectively targeting NO• donors to mitochondria is an effective strategy to reversibly modulate respiration and to protect mitochondria against ischemia-reperfusion injury.


Journal of Molecular and Cellular Cardiology | 2009

Cardioprotection by metabolic shut-down and gradual wake-up.

Lindsay S. Burwell; Sergiy M. Nadtochiy; Paul S. Brookes

Mitochondria play a critical role in cardiac function, and are also increasingly recognized as end effectors for various cardioprotective signaling pathways. Mitochondria use oxygen as a substrate, so by default their respiration is inhibited during hypoxia/ischemia. However, at reperfusion a surge of oxygen and metabolic substrates into the cell is thought to lead to rapid reestablishment of respiration, a burst of reactive oxygen species (ROS) generation and mitochondrial Ca(2+) overload. Subsequently these events precipitate opening of the mitochondrial permeability transition (PT) pore, which leads to myocardial cell death and dysfunction. Given that mitochondrial respiration is already inhibited during hypoxia/ischemia, it is somewhat surprising that many respiratory inhibitors can improve recovery from ischemia-reperfusion (IR) injury. In addition ischemic preconditioning (IPC), in which short non-lethal cycles of IR can protect against subsequent prolonged IR injury, is known to lead to endogenous inhibition of several respiratory complexes and glycolysis. This has led to a hypothesis that the wash-out of inhibitors or reversal of endogenous inhibition at reperfusion may afford protection by facilitating a more gradual wake-up of mitochondrial function, thereby avoiding a burst of ROS and Ca(2+) overload. This paper will review the evidence in support of this hypothesis, with a focus on inhibition of each of the mitochondrial respiratory complexes.


Cardiovascular Research | 2009

Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection.

Sergiy M. Nadtochiy; Paul R. S. Baker; Bruce A. Freeman; Paul S. Brookes

AIMS Both mitochondria and nitric oxide (NO*) contribute to cardioprotection by ischaemic preconditioning (IPC). IPC causes mild uncoupling of mitochondria via uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT), and mild uncoupling per se is cardioprotective. Although electrophilic lipids are known to activate mitochondrial uncoupling, the role of such species in IPC-induced uncoupling and cardioprotection is unclear. We hypothesized that endogenous formation of NO*-derived electrophilic lipids (nitroalkenes such as nitro-linoleate, LNO2) during IPC may stimulate mitochondrial uncoupling via post-translational modification of UCPs and ANT, thus affording cardioprotection. METHODS Hearts from male Sprague-Dawley rats were Langendorff-perfused and subjected to IPC. Nitroalkene formation was measured by HPLC-ESI-MS/MS. The effects of exogenous LNO2 and biotin-tagged LNO2 on isolated heart mitochondria and cardiomyocytes were also investigated. RESULTS Nitroalkenes including LNO2 were endogenously generated in mitochondria of IPC hearts. Synthetic LNO2 (<1 microM) activated mild uncoupling, an effect blocked by UCP and ANT inhibitors. LNO2 (<1 microM) also protected cardiomyocytes against simulated ischaemia-reperfusion injury. Biotinylated LNO2 covalently modified ANT thiols and possibly UCP-2. No effects of LNO2 were attributable to NO* release, cGMP signalling, mitochondrial KATP channels, or protective kinase signalling. CONCLUSION Components of a novel signalling pathway are inferred, wherein nitroalkenes formed by IPC-stimulated nitration reactions may induce mild mitochondrial uncoupling via post-translational modification of ANT and UCP-2, subsequently conferring resistance to ischaemia-reperfusion injury.


Biochemical Journal | 2006

Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection.

Sergiy M. Nadtochiy; Andrew J. Tompkins; Paul S. Brookes

The mechanisms of mitochondrial proton (H+) leak under various pathophysiological conditions are poorly understood. In the present study it was hypothesized that different mechanisms underlie H+ leak in cardiac IR (ischaemia/reperfusion) injury and IPC (ischaemic preconditioning). Potential H(+) leak mechanisms examined were UCPs (uncoupling proteins), allosteric activation of the ANT (adenine nucleotide translocase) by AMP, or the PT (permeability transition) pore. Mitochondria isolated from perfused rat hearts that were subjected to IPC exhibited a greater H+ leak than did controls (202+/-27%, P<0.005), and this increased leakage was completely abolished by the UCP inhibitor, GDP, or the ANT inhibitor, CAT (carboxyattractyloside). Mitochondria from hearts subjected to IR injury exhibited a much greater amount of H+ leak than did controls (411+/-28%, P<0.001). The increased leakage after IR was weakly inhibited by GDP, but was inhibited, >50%, by carboxyattractyloside. In addition, it was inhibited by cardioprotective treatment strategies including pre-IR perfusion with the PT pore inhibitors cyclosporin A or sanglifehrin A, the adenylate kinase inhibitor, AP5A (diadenosine pentaphosphate), or IPC. Together these data suggest that the small increase in H+ leak in IPC is mediated by UCPs, while the large increase in H+ leak in IR is mediated by the ANT. Furthermore, under all conditions studied, in situ myocardial O2 efficiency was correlated with isolated mitochondrial H+ leak (r2=0.71). In conclusion, these data suggest that the modulation of H+ leak may have important implications for the outcome of IR injury.


Biochemical Journal | 2010

Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation

Edward T. Chouchani; Thomas R. Hurd; Sergiy M. Nadtochiy; Paul S. Brookes; Ian M. Fearnley; Kathryn S. Lilley; Robin A. J. Smith; Michael P. Murphy

The S-nitrosation of mitochondrial proteins as a consequence of NO metabolism is of physiological and pathological significance. We previously developed a MitoSNO (mitochondria-targeted S-nitrosothiol) that selectively S-nitrosates mitochondrial proteins. To identify these S-nitrosated proteins, here we have developed a selective proteomic methodology, SNO-DIGE (S-nitrosothiol difference in gel electrophoresis). Protein thiols in control and MitoSNO-treated samples were blocked, then incubated with copper(II) and ascorbate to selectively reduce S-nitrosothiols. The samples were then treated with thiol-reactive Cy3 (indocarbocyanine) or Cy5 (indodicarbocyanine) fluorescent tags, mixed together and individual protein spots were resolved by 2D (two-dimensional) gel electrophoresis. Fluorescent scanning of these gels revealed S-nitrosated proteins by an increase in Cy5 red fluorescence, allowing for their identification by MS. Parallel analysis by Redox-DIGE enabled us to distinguish S-nitrosated thiol proteins from those which became oxidized due to NO metabolism. We identified 13 S-nitrosated mitochondrial proteins, and a further four that were oxidized, probably due to evanescent S-nitrosation relaxing to a reversible thiol modification. We investigated the consequences of S-nitrosation for three of the enzymes identified using SNO-DIGE (aconitase, mitochondrial aldehyde dehydrogenase and α-ketoglutarate dehydrogenase) and found that their activity was selectively and reversibly inhibited by S-nitrosation. We conclude that the reversible regulation of enzyme activity by S-nitrosation modifies enzymes central to mitochondrial metabolism, whereas identification and functional characterization of these novel targets provides mechanistic insight into the potential physiological and pathological roles played by this modification. More generally, the development of SNO-DIGE facilitates robust investigation of protein S-nitrosation across the proteome.


Cardiovascular Research | 2011

Lysine deacetylation in ischaemic preconditioning: the role of SIRT1

Sergiy M. Nadtochiy; Emily K. Redman; Irfan Rahman; Paul S. Brookes

AIMS Acute ischaemic preconditioning (IPC) induces protection against cardiac ischaemia-reperfusion (IR) via post-translational modification of key proteins. Lysine (Lys) acetylation is an important regulator of protein function, but this type of modification has not been studied in the context of IPC. We investigated Lys acetylation in IPC and its upstream regulation by SIRT1. METHODS AND RESULTS Hearts from C57BL/6 mice were Langendorff-perfused and subjected to IPC and IR injury. Mice were exposed to IPC by in vivo coronary artery occlusion. An isolated cardiomyocyte model of IPC was also developed. Lys acetylation was measured by western blotting, and pharmacological modulators of Lys acetylation were tested. More Lys deacetylation was observed in IPC, in the Langendorff, in vivo, and cellular IPC models; this was concurrent with an increase in SIRT1 activity measured by p53 Lys₃₇₉ deacetylation. IPC was not accompanied by changes in SIRT1 protein level, but evidence was obtained for SIRT1 modification by Small Ubiquitin-like Modifier (SUMOylation) in IPC. Furthermore, the specific SIRT1 inhibitor splitomicin reversed both IPC-mediated Lys deacetylation and IPC-induced cardioprotection. Inhibition of nicotinamide phosphoribosyltransferase (Nampt, an important enzyme which regulates SIRT1 activity by maintaining availability of the substrate NAD(+)) also blocked both IPC-induced deacetylation and cardioprotection. CONCLUSION Lys deacetylation occurs during IPC and an elevation in SIRT1 activity plays a role in this phenomenon. Inhibition of SIRT1, either directly or by restricting the availability of its substrate NAD(+), inhibits IPC. Together these data suggest a role for SIRT1-mediated Lys deacetylation in the mechanism of acute IPC.


Nutrition | 2011

Mediterranean diet and cardioprotection: The role of nitrite, polyunsaturated fatty acids, and polyphenols

Sergiy M. Nadtochiy; Emily K. Redman

The continually increasing rate of myocardial infarction (MI) in the Western world at least partly can be explained by a poor diet lacking in green vegetables, fruits, and fish and enriched in food that contains saturated fat. In contrast, a number of epidemiologic studies provide strong evidence highlighting the cardioprotective benefits of the Mediterranean diet enriched in green vegetables, fruits, fish, and grape wine. Regular consumption of these products leads to an accumulation of nitrate/nitrite/NO, polyunsaturated fatty acids (PUFA), and polyphenolic compounds, such as resveratrol, in the human body. Studies have confirmed that these constituents are bioactive exogenous mediators, which induce strong protection against MI. The aim of this review is to provide a critical, in-depth analysis of the cardioprotective pathways mediated by nitrite/NO, PUFA, and phenolic compounds of grape wines discovered in the recent years, including cross-talk between different mechanisms and compounds. Overall, these findings may facilitate the design and synthesis of novel therapeutic tools for the treatment of MI.

Collaboration


Dive into the Sergiy M. Nadtochiy's collaboration.

Top Co-Authors

Avatar

Paul S. Brookes

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Keith Nehrke

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

William R. Urciuoli

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Wojtovich

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joshua Munger

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

George A. Porter

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jimmy Zhang

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Lindsay S. Burwell

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yves T Wang

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge