Serguei Tcheremchantsev
University of Orléans
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Serguei Tcheremchantsev.
Communications in Mathematical Physics | 2008
David Damanik; Mark Embree; Anton Gorodetski; Serguei Tcheremchantsev
We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower bounds for its fractal dimension in the large coupling regime. These bounds show that as
Communications in Mathematical Physics | 2003
David Damanik; Serguei Tcheremchantsev
Journal of the American Mathematical Society | 2007
David Damanik; Serguei Tcheremchantsev
\lambda \to \infty, {\rm dim} (\sigma(H_\lambda)) \cdot {\rm log} \lambda
Duke Mathematical Journal | 2001
Jean-Marie Barbaroux; François Germinet; Serguei Tcheremchantsev
Journal D Analyse Mathematique | 2005
David Damanik; Serguei Tcheremchantsev
converges to an explicit constant,
Journal of Functional Analysis | 2003
Serguei Tcheremchantsev
Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 2000
Jean-Marie Barbaroux; François Germinet; Serguei Tcheremchantsev
{\rm log}(1+\sqrt{2})\approx 0.88137
Journal de Mathématiques Pures et Appliquées | 2001
Jean-Marie Barbaroux; François Germinet; Serguei Tcheremchantsev
Annales de l'Institut Fourier | 2004
François Germinet; Alexander Kiselev; Serguei Tcheremchantsev
. We also discuss consequences of these results for the rate of propagation of a wavepacket that evolves according to Schrödinger dynamics generated by the Fibonacci Hamiltonian.
Journal of Functional Analysis | 2004
David Damanik; András Sütő; Serguei Tcheremchantsev
Abstract: We present an approach to quantum dynamical lower bounds for discrete one-dimensional Schrödinger operators which is based on power-law bounds on transfer matrices. It suffices to have such bounds for a nonempty set of energies. We apply this result to various models, including the Fibonacci Hamiltonian.