Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Şerife Tokalıoğlu is active.

Publication


Featured researches published by Şerife Tokalıoğlu.


Food Chemistry | 2012

Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis.

Şerife Tokalıoğlu

The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb elements in thirty medicinal herb samples widely consumed in Kayseri, Turkey were determined by using inductively coupled plasma mass spectrometry (ICP-MS). The samples were digested with concentrated nitric acid and hydrogen peroxide in a microwave system. The decreasing sequence of the mean metal levels in medicinal herbs is as follows: Fe>Sr>Mn>Zn>Rb>Cu>Ni>Cr>Co>Pb. Correlation analysis, principal component analysis and cluster analysis were applied to the data matrix to evaluate analytical results. It was found that four principal components account for 80.6% of the total variance in the data. In order to verify the accuracy of the method, GBW07605 Tea Certified Reference Material was analysed.


Analytica Chimica Acta | 2009

Indirect speciation of Cr(III) and Cr(VI) in water samples by selective separation and preconcentration on a newly synthesized chelating resin.

Şerife Tokalıoğlu; Semra Arsav; Ali Delibaş; Cengiz Soykan

A new solid phase extraction method for the speciation, separation and preconcentration of Cr(III) and Cr(VI) was developed. As solid phase material, a new chelating resin, poly N-(4-bromophenyl)-2-methacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid-co-divinylbenzene was synthesized. Cr(III) was separated from Cr(VI) and preconcentrated by using a column containing chelating resin. Total chromium was determined after the reduction of Cr(VI) to Cr(III) by hydroxylamine hydrochloride as a reducing agent. Then Cr(VI) was calculated by substracting Cr(III) concentration from the total chromium concentration. The parameters such as the effect of pH, eluent type, volume and concentration, flow rate of sample solution, sample volume and effect of interfering ions for the preconcentration of Cr(III) were investigated. The optimum pH was found to be 2. Eluent for quantitative elution was 10 mL of 1 mol L(-1) HCl. The preconcentration factor of the method was 100. At the optimum conditions determined experimentally, the recovery for Cr(III) was found to be 95 +/- 3%. The limit of detection (3s/b) of the method was 1.58 microg L(-1). In order to determine the adsorption behaviour of chelating resin, the adsorption isotherm of Cr(III) was studied. Adsorption capacity and binding equilibrium constant were calculated to be 21.8 mg g(-1) and 1.32 x 10(-2) L mg(-1), respectively. The method was validated by analysing certified reference material (TMDA-54.4 a trace element fortified calibration standard). The proposed method was applied to the determination and speciation of chromium in tap water, lake water, spring water and wastewater samples with satisfactory results.


International Journal of Environmental Analytical Chemistry | 2006

Investigation of heavy-metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method

Şerife Tokalıoğlu; Şenol Kartal; Arıf Gültekın

The heavy metal (Cu, Fe, Co, Ni, Cd, Cr, Pb, Zn, and Mn) concentrations in soils and in vegetable samples, i.e. lettuce (Lactuca sativa L.), parsley (Petroselinum crispum), dill (Anethum graveolens), and onion (Allium cepa L.), taken from three urban vegetable gardens in Kayseri, Turkey, were determined by FAAS. The modified three-step sequential extraction procedure proposed by the European Bureau of References (BCR), now the Standards, Measurements and Testing Programme, was used in order to evaluate trace elements mobility in soil samples, and heavy-metal uptake by vegetables. Three operationally defined fractions were isolated using the BCR procedure: acid extractable (i.e. bound to carbonates), reducible (bound to Fe/Mn oxides), and oxidizable (bound to organic matter and sulphides). The vegetable samples were prepared to analysis using the wet-ashing procedure. To estimate the accuracy of the method used in analysis of the vegetable samples, the standard reference material (NIST SRM 1573a, Tomato leaves) was used. The results of recovery for all the elements were relatively satisfactory (87.7–108%). For the soil samples, the recovery values were calculated by proportioning the sum of the steps of the BCR procedure to those of the pseudototal digestion (i.e. aqua regia). In soils, the mobility of heavy metals followed the order Mn>Cd>Cu>Pb>Zn>Cr>Ni>Co>Fe. The relationship between the vegetable–metal and soil–extractable metal concentrations was examined in order to evaluate the bioavailability of metals, and the positive correlation, especially for the first (i.e. water, acid-soluble and exchangeable fraction) and for the third (i.e. oxidizable fraction) extraction steps, was obtained.


Journal of Hazardous Materials | 2009

Synthesis of a novel chelating resin and its use for selective separation and preconcentration of some trace metals in water samples

Şerife Tokalıoğlu; Vedat Yılmaz; Şenol Kartal; Ali Delibaş; Cengiz Soykan

A new chelating resin, poly[N-(4-bromophenyl)-2-methacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid-co-divinylbenzene], was synthesized and characterized. The resin was used for selective separation, preconcentration and determination of Cu(II), Ni(II), Co(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in water samples by flame atomic absorption spectrometry. Effects of pH, concentration and volume of elution solution, sample flow rate, sample volume and interfering ions (Na(+), K(+), Ca(2+), Mg(2+), Fe(3+), Mn(2+), Al(3+), Zn(2+), Pb(2+), Cu(2+), Ni(2+), Cd(2+), Cl(-) and SO(4)(2-)) on the recovery of the analytes were investigated. The sorption capacity of the resin was 25.6, 19.8, 32.1, 41.3, 38.9, 13.9 and 18.3 mg g(-1) for Cu(II), Ni(II), Co(II), Cd(II), Pb(II), Mn(II) and Fe(III), respectively. A high preconcentration factor, 100, and low relative standard deviation, <or=2.5% (n=7) values were obtained. The detection limits (microg L(-1)) were 0.57 for Cu(II), 0.37 for Ni(II), 0.24 for Co(II), 0.09 for Cd(II), 1.6 for Pb(II), 0.19 for Mn(II) and 0.72 for Fe(III). The method was validated by analysing fortified lake water (TMDA-54.4, a trace element fortified calibration standard) and spiked water samples. The method was applied to the determination of the analytes in tap and lake water samples.


RSC Advances | 2013

A graphene/Co3O4 nanocomposite as a new adsorbent for solid phase extraction of Pb(II), Cu(II) and Fe(III) ions in various samples

Emre Yavuz; Şerife Tokalıoğlu; Halil Şahan; Şaban Patat

A graphene-based cobalt nanocomposite (G/Co3O4) was synthesized and used for the first time as an effective adsorbent for the preconcentration of the Pb(II), Cu(II) and Fe(III) ions in environmental water and food samples prior to flame atomic absorption detection. The properties of the graphene, Co3O4 and G/Co3O4 nanocomposite were characterized by X-ray diffraction, scanning electron microscopy, and thermal gravimetric analysis. The experimental parameters affecting the solid phase extraction efficiency for analyte ions including sample pH, adsorption and elution contact time, volume and concentration of eluting reagent, sample volume and interfering ions were examined. The adsorption capacity of the G/Co3O4 composite was found to be 58, 77 and 78 mg g−1 for Pb(II), Cu(II) and Fe(III), respectively. The quantitative elution of the adsorbed metal ions was carried out by 2 mL of 2 mol L−1 HNO3. The preconcentration factor of the method was 175. The limit of detection was found to be ≤0.81 μg L−1. The accuracy of the method was studied by analyzing certified reference material (RM 8704 Buffalo River Sediment, SRM 1568a Rice Flour and SPS-WW1 Batch 111-Wastewater) and spiked real samples. The method was applied for the separation and preconcentration of trace metal ions in tap water, wastewater, dam water, well water, kiwi and wheat samples.


Ecotoxicology and Environmental Safety | 2016

Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

Gülşen Yıldırım; Şerife Tokalıoğlu

A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples.


Environmental Monitoring and Assessment | 2009

Solid phase extraction of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions with 1-(2-thiazolylazo)-2-naphthol loaded Amberlite XAD-1180.

Şerife Tokalıoğlu; Vedat Yılmaz; Şenol Kartal

A new method for separation and preconcentration of trace amounts of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions in various matrices was proposed. The method is based on the adsorption and chelation of the metal ions on a column containing Amberlite XAD-1180 resin impregnated with 1-(2-thiazolylazo)-2-naphthol (TAN) reagent prior to their determination by flame atomic absorption spectrometry (FAAS). The effect of pH, type, concentration and volume of eluent, sample volume, flow rates of sample and elution solutions, and interfering ions have been investigated. The optimum pH for simultaneous retention of all the metal ions was 9. Eluent for quantitative elution was 20 ml of 2 mol l−1 HNO3. The optimum sample and eluent flow rates were found as 4 ml min−1, and also sample volume was 500 ml, except for Mn (87% recovery). The sorption capacity of the resin was found to be 0.77, 0.41, 0.57, and 0.30 mg g−1 for Cu(II), Ni(II), Cd(II), and Mn(II), respectively. The preconcentration factor of the method was 200 for Cu(II), 150 for Pb(II), 100 for Cd(II) and Ni(II), and 50 for Mn(II). The recovery values for all of the metal ions were ≥95% and relative standard deviations (RSDs) were ≤5.1%. The detection limit values were in the range of 0.03 and 1.19 μg l−1. The accuracy of the method was confirmed by analysing the certified reference materials (TMDA 54.4 fortified lake water and GBW 07605 tea samples) and the recovery studies. This procedure was applied to the determination of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) in waste water and lake water samples.


Talanta | 2014

Nano sponge Mn2O3 as a new adsorbent for the preconcentration of Pd(II) and Rh(III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations

Emre Yavuz; Şerife Tokalıoğlu; Halil Şahan; Şaban Patat

In this study, a nano sponge Mn2O3 adsorbent was synthesized and was used for the first time. Various parameters affecting the recovery values of Pd(II) and Rh(III) were examined. The tolerance limits (≥ 90 %) for both Pd(II) and Rh(III) ions were found to be 75,000 mg L(-1) Na(I), 75,000 mg L(-1) K(I), 50,000 mg L(-1) Mg(II) and 50,000 mg L(-1) Ca(II). A 30s contact time was enough for both adsorption and elution. A preconcentration factor of 100 was obtained by using 100mg of the nano sponge Mn2O3. The reusability of the adsorbent was 120 times. Adsorption capacities for Pd(II) and Rh(III) were found to be 42 and 6.2 mg g(-1), respectively. The detection limits were 1.0 µg L(-1) for Pd(II) and 0.37 µg L(-1) for Rh(III) and the relative standard deviations (RSD, %) were found to be ≤ 2.5%. The method was validated by analyzing the standard reference material, SRM 2556 (Used Auto Catalyst Pellets) and spiked real samples. The optimized method was applied for the preconcentration of Pd(II) and Rh(III) ions in water (sea water and wastewater), rock, street sediment and catalytic converter samples.


International Journal of Environmental Analytical Chemistry | 2003

Relationship between vegetable metal and soil-extractable metal contents by the BCR sequential extraction procedure: chemometrical interpretation of the data

Şerife Tokalıoğlu; Şenol Kartal

The contents of heavy metals in soil and vegetable samples collected from an urban garden in Kayseri, Turkey, were investigated. Both wet- and dry-ashing methods were used for dissolving vegetable samples. A sequential extraction procedure proposed by the Commission of the European Communities, Community Bureau of Reference (now superseded by the Standards, Measurement and Testing Programme, SM&T) was applied to the soil samples to extract the metals which are present in exchangeable and acid soluble (i.e. bound to carbonates), reducible (bound to Fe/Mn oxides), and oxidisable forms (bound to organic matter and sulphides) in the soil samples. Trace metals in the soil and vegetable samples were determined using flame atomic absorption spectrometry (FAAS). The total metal contents acquired by summing of metal levels in all the sequential extraction steps were compared with pseudo-total metal levels obtained with aqua regia for all the soil samples. The recovery values obtained by proportioning the results obtained by the BCR procedure to those of the pseudo-total digestion were found to be satisfactory. The limits of detection for the elements investigated were in the range of 0.04 to 0.59 µg mL−1 for all the extraction stages of the BCR procedure. Similarities among the variables were identified by correlation analysis, principal component analysis and hierarchical cluster analysis. The relationship between the vegetable metal and soil-extractable metal concentrations was examined in order to evaluate the bioavailability of metals.


Food Chemistry | 2016

Nanosized spongelike Mn3O4 as an adsorbent for preconcentration by vortex assisted solid phase extraction of copper and lead in various food and herb samples

Emre Yavuz; Şerife Tokalıoğlu; Halil Şahan; Şaban Patat

In this paper, a nanosized spongelike Mn3O4 was synthesized and used for the first time as an effective adsorbent for vortex-assisted separation and preconcentration of lead and copper from various food samples. Copper and lead were determined by flame atomic absorption spectrometry. The characterization of the nanosized spongelike Mn3O4 was performed by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, Brunauer, Emmett and Teller surface area and zeta potential measurement. The contact times for both adsorption and elution were only 3min. Under the optimized conditions, detection limits for copper and lead were found to be 2.6μgL(-1) and 3.0μgL(-1), respectively. The relative standard deviations were found to be ⩽3.2%. The accuracy of the method was confirmed by analyzing the standard reference materials (BCR-482 Licken and SRM 1573a Tomato Leaves) and spiked real food and herb samples.

Collaboration


Dive into the Şerife Tokalıoğlu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge