Seth A. Hays
University of Texas at Dallas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seth A. Hays.
Progress in Brain Research | 2013
Seth A. Hays; Robert L. Rennaker; Michael P. Kilgard
Pathological neural activity in a variety of neurological disorders could be treated by directing plasticity to specifically renormalize aberrant neural circuits, thereby restoring normal function. Brief bursts of acetylcholine and norepinephrine can enhance the neural plasticity associated with coincident events. Vagus nerve stimulation (VNS) represents a safe and effective means to trigger the release of these neuromodulators with a high degree of temporal control. VNS-event pairing can generate highly specific and long-lasting plasticity in sensory and motor cortex. Based on the capacity to drive specific changes in neural circuitry, VNS paired with experience has been successful in effectively ameliorating animal models of chronic tinnitus, stroke, and posttraumatic stress disorder. Targeted plasticity therapy utilizing VNS is currently being translated to humans to treat chronic tinnitus and improve motor recovery after stroke. This chapter will discuss the current progress of VNS paired with experience to drive specific plasticity to treat these neurological disorders and will evaluate additional future applications of targeted plasticity therapy.
Neurobiology of Disease | 2013
Navid Khodaparast; Seth A. Hays; Andrew M. Sloan; Daniel R. Hulsey; Andrea Ruiz; Maritza Pantoja; Robert L. Rennaker; Michael P. Kilgard
Upper limb impairment is a common debilitating consequence of ischemic stroke. Physical rehabilitation after stroke enhances neuroplasticity and improves limb function, but does not typically restore normal movement. We have recently developed a novel method that uses vagus nerve stimulation (VNS) paired with forelimb movements to drive specific, long-lasting map plasticity in rat primary motor cortex. Here we report that VNS paired with rehabilitative training can enhance recovery of forelimb force generation following infarction of primary motor cortex in rats. Quantitative measures of forelimb function returned to pre-lesion levels when VNS was delivered during rehab training. Intensive rehab training without VNS failed to restore function back to pre-lesion levels. Animals that received VNS during rehab improved twice as much as rats that received the same rehabilitation without VNS. VNS delivered during physical rehabilitation represents a novel method that may provide long-lasting benefits towards stroke recovery.
Neurorehabilitation and Neural Repair | 2014
Navid Khodaparast; Seth A. Hays; Andrew M. Sloan; Tabbassum Fayyaz; Daniel R. Hulsey; Robert L. Rennaker; Michael P. Kilgard
Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation.
Stroke | 2014
Seth A. Hays; Navid Khodaparast; Daniel R. Hulsey; Andrea Ruiz; Andrew M. Sloan; Robert L. Rennaker; Michael P. Kilgard
Background and Purpose— Vagus nerve stimulation (VNS) delivered during rehabilitative training enhances neuroplasticity and improves recovery in models of cortical ischemic stroke. However, VNS therapy has not been applied in a model of subcortical intracerebral hemorrhage (ICH). We hypothesized that VNS paired with rehabilitative training after ICH would enhance recovery of forelimb motor function beyond rehabilitative training alone. Methods— Rats were trained to perform an automated, quantitative measure of forelimb function. Once proficient, rats received an intrastriatal injection of bacterial collagenase to induce ICH. Rats then underwent VNS paired with rehabilitative training (VNS+Rehab; n=14) or rehabilitative training without VNS (Rehab; n=12). Rehabilitative training began ≥9 days after ICH and continued for 6 weeks. Results— VNS paired with rehabilitative training significantly improved recovery of forelimb function when compared with rehabilitative training without VNS. The VNS+Rehab group displayed a 77% recovery of function, whereas the Rehab group only exhibited 29% recovery. Recovery was sustained after cessation of stimulation. Both groups performed similar amounts of trials during rehabilitative, and lesion size was not different between groups. Conclusions— VNS paired with rehabilitative training confers significantly improved forelimb recovery after ICH compared to rehabilitative training without VNS.
Journal of Neuroscience Methods | 2013
Seth A. Hays; Navid Khodaparast; Andrew M. Sloan; Daniel R. Hulsey; Maritza Pantoja; Andrea Ruiz; Michael P. Kilgard; Robert L. Rennaker
Reach-to-grasp tasks are commonly used to assess forelimb function in rodent models. While these tasks have been useful for investigating several facets of forelimb function, they are typically labor-intensive and do not directly quantify physiological parameters. Here we describe the isometric pull task, a novel method to measure forelimb strength and function in rats. Animals were trained to reach outside the cage, grasp a handle attached to a stationary force transducer, and pull with a predetermined amount of force to receive a food reward. This task provides quantitative data on operant forelimb force generation. Multiple parameters can be measured with a high degree of accuracy, including force, success rate, pull attempts, and latency to maximal force. The task is fully automated, allowing a single experimenter to test multiple animals simultaneously with usually more than 300 trials per day, providing more statistical power than most other forelimb motor tasks. We demonstrate that an ischemic lesion in primary motor cortex yields robust deficits in all forelimb function parameters measured with this method. The isometric pull task is a significant advance in operant conditioning systems designed to automate the measurement of multiple facets of forelimb function and assess deficits in rodent models of brain damage and motor dysfunction.
Journal of Neurotrauma | 2016
David T. Pruitt; Ariel N. Schmid; Lily J. Kim; Caroline M. Abe; Jenny Trieu; Connie Choua; Seth A. Hays; Michael P. Kilgard; Robert L. Rennaker
Traumatic Brain Injury (TBI) is one of the largest health problems in the United States, and affects nearly 2 million people every year. The effects of TBI, including weakness and loss of coordination, can be debilitating and last years after the initial injury. Recovery of motor function is often incomplete. We have developed a method using electrical stimulation of the vagus nerve paired with forelimb use by which we have demonstrated enhanced recovery from ischemic and hemorrhagic stroke. Here we have tested the hypothesis that vagus nerve stimulation (VNS) paired with physical rehabilitation could enhance functional recovery after TBI. We trained rats to pull on a handle to receive a food reward. Following training, they received a controlled-cortical impact (CCI) in the forelimb area of motor cortex opposite the trained forelimb, and were then randomized into two treatment groups. One group of animals received VNS paired with rehabilitative therapy, whereas another group received rehabilitative therapy without VNS. Following CCI, volitional forelimb strength and task success rate in all animals were significantly reduced. VNS paired with rehabilitative therapy over a period of 5 weeks significantly increased recovery of both forelimb strength and success rate on the isometric pull task compared with rehabilitative training without VNS. No significant improvement was observed in the Rehab group. Our findings indicate that VNS paired with rehabilitative therapy enhances functional motor recovery after TBI.
Neuroreport | 2014
Seth A. Hays; Navid Khodaparast; Andrea Ruiz; Andrew M. Sloan; Daniel R. Hulsey; Robert L. Rennaker; Michael P. Kilgard
Loss of upper arm strength after stroke is a leading cause of disability. Strategies that can enhance the benefits of rehabilitative training could improve motor function after stroke. Recent studies in a rat model of ischemic stroke have demonstrated that vagus nerve stimulation (VNS) paired with rehabilitative training substantially improves recovery of forelimb strength compared with extensive rehabilitative training without VNS. Here we report that the timing and amount of stimulation affect the degree of forelimb strength recovery. Similar amounts of Delayed VNS delivered 2 h after daily rehabilitative training sessions resulted in significantly less improvement compared with that on delivery of VNS that is paired with identical rehabilitative training. Significantly less recovery also occurred when several-fold more VNS was delivered during rehabilitative training. Both delayed and additional VNS confer moderately improved recovery compared with extensive rehabilitative training without VNS, but fail to enhance recovery to the same degree as VNS that is timed to occur with successful movements. These findings confirm that VNS paired with rehabilitative training holds promise for restoring forelimb strength poststroke and indicate that both the timing and the amount of VNS should be optimized to maximize therapeutic benefits.
Experimental Neurology | 2017
Daniel R. Hulsey; Jonathan R. Riley; Kristofer W. Loerwald; Robert L. Rennaker; Michael P. Kilgard; Seth A. Hays
ABSTRACT Vagus nerve stimulation (VNS) has emerged as a therapy to treat a wide range of neurological disorders, including epilepsy, depression, stroke, and tinnitus. Activation of neurons in the locus coeruleus (LC) is believed to mediate many of the effects of VNS in the central nervous system. Despite the importance of the LC, there is a dearth of direct evidence characterizing neural activity in response to VNS. A detailed understanding of the brain activity evoked by VNS across a range of stimulation parameters may guide selection of stimulation regimens for therapeutic use. In this study, we recorded neural activity in the LC and the mesencephalic trigeminal nucleus (Me5) in response to VNS over a broad range of current amplitudes, pulse frequencies, train durations, inter‐train intervals, and pulse widths. Brief 0.5 s trains of VNS drive rapid, phasic firing of LC neurons at 0.1 mA. Higher current intensities and longer pulse widths drive greater increases in LC firing rate. Varying the pulse frequency substantially affects the timing, but not the total amount, of phasic LC activity. VNS drives pulse‐locked neural activity in the Me5 at current levels above 1.2 mA. These results provide insight into VNS‐evoked phasic neural activity in multiple neural structures and may be useful in guiding the selection of VNS parameters to enhance clinical efficacy. HighlightsVagus nerve stimulation drives rapid, phasic neural activity in locus coeruleus.Increasing current intensity and pulse width results in greater driven activity.Varying frequency alters the timing, but not total amount, of driven activity.Stronger stimulation drives off‐target activity in the mesencephalic trigeminal nucleus.
Neurotherapeutics | 2016
Seth A. Hays
Pathological neural activity could be treated by directing specific plasticity to renormalize circuits and restore function. Rehabilitative therapies aim to promote adaptive circuit changes after neurological disease or injury, but insufficient or maladaptive plasticity often prevents a full recovery. The development of adjunctive strategies that broadly support plasticity to facilitate the benefits of rehabilitative interventions has the potential to improve treatment of a wide range of neurological disorders. Recently, stimulation of the vagus nerve in conjunction with rehabilitation has emerged as one such potential targeted plasticity therapy. Vagus nerve stimulation (VNS) drives activation of neuromodulatory nuclei that are associated with plasticity, including the cholinergic basal forebrain and the noradrenergic locus coeruleus. Repeatedly pairing brief bursts of VNS sensory or motor events drives robust, event-specific plasticity in neural circuits. Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, and post-traumatic stress disorder benefit from delivery of VNS paired with successful trials during rehabilitative training. Moreover, mounting evidence from pilot clinical trials provides an initial indication that VNS-based targeted plasticity therapies may be effective in patients with neurological diseases and injuries. Here, I provide a discussion of the current uses and potential future applications of VNS-based targeted plasticity therapies in animal models and patients, and outline challenges for clinical implementation.
Brain Stimulation | 2016
Daniel R. Hulsey; Seth A. Hays; Navid Khodaparast; Andrea Ruiz; Priyanka Das; Robert L. Rennaker; Michael P. Kilgard
BACKGROUND Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. OBJECTIVE We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. METHODS Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. RESULTS VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. CONCLUSIONS Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy.