Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seth Blackshaw is active.

Publication


Featured researches published by Seth Blackshaw.


PLOS Biology | 2004

Genomic Analysis of Mouse Retinal Development

Seth Blackshaw; Sanjiv Harpavat; Jeff Trimarchi; Li Cai; Haiyan Huang; Winston Patrick Kuo; Griffin M. Weber; Kyungjoon Lee; Rebecca E. Fraioli; Seo-Hee Cho; Rachel Yung; Elizabeth Asch; Lucila Ohno-Machado; Wing Hung Wong; Constance L. Cepko

The vertebrate retina is comprised of seven major cell types that are generated in overlapping but well-defined intervals. To identify genes that might regulate retinal development, gene expression in the developing retina was profiled at multiple time points using serial analysis of gene expression (SAGE). The expression patterns of 1,051 genes that showed developmentally dynamic expression by SAGE were investigated using in situ hybridization. A molecular atlas of gene expression in the developing and mature retina was thereby constructed, along with a taxonomic classification of developmental gene expression patterns. Genes were identified that label both temporal and spatial subsets of mitotic progenitor cells. For each developing and mature major retinal cell type, genes selectively expressed in that cell type were identified. The gene expression profiles of retinal Müller glia and mitotic progenitor cells were found to be highly similar, suggesting that Müller glia might serve to produce multiple retinal cell types under the right conditions. In addition, multiple transcripts that were evolutionarily conserved that did not appear to encode open reading frames of more than 100 amino acids in length (“noncoding RNAs”) were found to be dynamically and specifically expressed in developing and mature retinal cell types. Finally, many photoreceptor-enriched genes that mapped to chromosomal intervals containing retinal disease genes were identified. These data serve as a starting point for functional investigations of the roles of these genes in retinal development and physiology.


Neuron | 2013

RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention

Christopher J. Donnelly; Ping-Wu Zhang; Jacqueline T. Pham; Aaron R. Haeusler; Nipun A. Mistry; Svetlana Vidensky; Elizabeth L. Daley; Erin M. Poth; Benjamin Hoover; Daniel M. Fines; Nicholas J. Maragakis; Pentti J. Tienari; Leonard Petrucelli; Bryan J. Traynor; Jiou Wang; Frank Rigo; C. Frank Bennett; Seth Blackshaw; Rita Sattler; Jeffrey D. Rothstein

A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.


Cell | 2001

Comprehensive Analysis of Photoreceptor Gene Expression and the Identification of Candidate Retinal Disease Genes

Seth Blackshaw; Rebecca E. Fraioli; Takahisa Furukawa; Constance L. Cepko

To identify the full set of genes expressed by mammalian rods, we conducted serial analysis of gene expression (SAGE) by using libraries generated from mature and developing mouse retina. We identified 264 uncharacterized genes that were specific to or highly enriched in rods. Nearly half of all cloned human retinal disease genes are selectively expressed in rod photoreceptors. In silico mapping of the human orthologs of genes identified in our screen revealed that 86 map within intervals containing uncloned retinal disease genes, representing 37 different loci. We expect these data will allow identification of many disease genes, and that this approach may be useful for cloning genes involved in classes of disease where cell type-specific expression of disease genes is observed.


Cell | 2009

Profiling the Human Protein-DNA Interactome Reveals ERK2 as a Transcriptional Repressor of Interferon Signaling

Shaohui Hu; Zhi Xie; Akishi Onishi; Xueping Yu; Lizhi Jiang; Jimmy Lin; Hee Sool Rho; Crystal Woodard; Hong Wang; Jun Seop Jeong; Shunyou Long; Xiaofei He; Herschel Wade; Seth Blackshaw; Jiang Qian; Heng Zhu

Protein-DNA interactions (PDIs) mediate a broad range of functions essential for cellular differentiation, function, and survival. However, it is still a daunting task to comprehensively identify and profile sequence-specific PDIs in complex genomes. Here, we have used a combined bioinformatics and protein microarray-based strategy to systematically characterize the human protein-DNA interactome. We identified 17,718 PDIs between 460 DNA motifs predicted to regulate transcription and 4,191 human proteins of various functional classes. Among them, we recovered many known PDIs for transcription factors (TFs). We identified a large number of unanticipated PDIs for known TFs, as well as for previously uncharacterized TFs. We also found that over three hundred unconventional DNA-binding proteins (uDBPs)--which include RNA-binding proteins, mitochondrial proteins, and protein kinases--showed sequence-specific PDIs. One such uDBP, ERK2, acts as a transcriptional repressor for interferon gamma-induced genes, suggesting important biological roles for such proteins.


Nature Neuroscience | 2012

Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche.

Daniel A. Lee; Joseph L. Bedont; Thomas Pak; Hong Wang; Juan Song; Ana Miranda-Angulo; Vani Takiar; Vanessa Charubhumi; Francesca Balordi; Hirohide Takebayashi; Susan Aja; Eric W. Ford; Gordon Fishell; Seth Blackshaw

Adult hypothalamic neurogenesis has recently been reported, but the cell of origin and the function of these newborn neurons are unknown. Using genetic fate mapping, we found that median eminence tanycytes generate newborn neurons. Blocking this neurogenesis altered the weight and metabolic activity of adult mice. These findings reveal a previously unreported neurogenic niche in the mammalian hypothalamus with important implications for metabolism.


Journal of Biological Chemistry | 1998

Cain, a novel physiologic protein inhibitor of calcineurin

Michael M. Lai; Patrick E. Burnett; Herman Wolosker; Seth Blackshaw; Solomon H. Snyder

Calcineurin is a widely distributed protein phosphatase regulated by calcium and calmodulin. It mediates the immunosuppressive actions of drugs such as cyclosporin and FK506, and has been implicated in a number of calcium-sensitive pathways in the nervous system, including regulation of neurotransmitter release and modulation of long-term changes in synaptic plasticity. Calcineurin associates physiologically with other proteins, including calmodulin, FKBP12 (FK506-binding protein), the ryanodine receptor, and the inositol 1,4,5-trisphosphate receptor. We now report the identification, molecular cloning, and functional characterization of a novel protein, cain (calcineurininhibitor), that interacts with and inhibits calcineurin. The full-length cain cDNA predicts a 240-kDa protein with no significant homology to any known protein. Cain associates with calcineurin both in vitro and in vivo, leading to a non-competitive inhibition of calcineurin activity. The putative calcineurin-binding domain of cain, a 38-amino acid region defined by mutational analysis, is highly basic. Like calcineurin, cain has a prominent neuronal expression and a wide tissue distribution. Cain’s expression pattern in the brain closely resembles that of calcineurin, indicating a physiologic association between the two proteins.


Journal of Clinical Investigation | 2000

Insulin restores neuronal nitric oxide synthase expression and function that is lost in diabetic gastropathy

Crystal C. Watkins; Akira Sawa; Samie R. Jaffrey; Seth Blackshaw; Roxanne K. Barrow; Solomon H. Snyder; Christopher D. Ferris

Gastrointestinal dysfunction is common in diabetic patients. In genetic (nonobese diabetic) and toxin-elicited (streptozotocin) models of diabetes in mice, we demonstrate defects in gastric emptying and nonadrenergic, noncholinergic relaxation of pyloric muscle, which resemble defects in mice harboring a deletion of the neuronal nitric oxide synthase gene (nNOS). The diabetic mice manifest pronounced reduction in pyloric nNOS protein and mRNA. The decline of nNOS in diabetic mice does not result from loss of myenteric neurons. nNOS expression and pyloric function are restored to normal levels by insulin treatment. Thus diabetic gastropathy in mice reflects an insulin-sensitive reversible loss of nNOS. In diabetic animals, delayed gastric emptying can be reversed with a phosphodiesterase inhibitor, sildenafil. These findings have implications for novel therapeutic approaches and may clarify the etiology of diabetic gastropathy.


Nature Neuroscience | 2010

A genomic atlas of mouse hypothalamic development

Tomomi Shimogori; Daniel A. Lee; Ana Miranda-Angulo; Y. Yang; Hong Wang; Lizhi Jiang; Aya C. Yoshida; Ayane Kataoka; Hiromi Mashiko; Marina Avetisyan; Lixin Qi; Jiang Qian; Seth Blackshaw

The hypothalamus is a central regulator of many behaviors that are essential for survival, such as temperature regulation, food intake and circadian rhythms. However, the molecular pathways that mediate hypothalamic development are largely unknown. To identify genes expressed in developing mouse hypothalamus, we performed microarray analysis at 12 different developmental time points. We then conducted developmental in situ hybridization for 1,045 genes that were dynamically expressed over the course of hypothalamic neurogenesis. We identified markers that stably labeled each major hypothalamic nucleus over the entire course of neurogenesis and constructed a detailed molecular atlas of the developing hypothalamus. As a proof of concept of the utility of these data, we used these markers to analyze the phenotype of mice in which Sonic Hedgehog (Shh) was selectively deleted from hypothalamic neuroepithelium and found that Shh is essential for anterior hypothalamic patterning. Our results serve as a resource for functional investigations of hypothalamic development, connectivity, physiology and dysfunction.


Molecular Psychiatry | 2014

The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing

Guy Barry; James Briggs; Darya Vanichkina; E. M. Poth; Natalie J. Beveridge; Vikram S. Ratnu; Sam P. Nayler; Katia Nones; Jianfei Hu; Timothy W. Bredy; Shinichi Nakagawa; Frank Rigo; Ryan J. Taft; Murray J. Cairns; Seth Blackshaw; Ernst J. Wolvetang; John S. Mattick

Schizophrenia (SZ) is a complex disease characterized by impaired neuronal functioning. Although defective alternative splicing has been linked to SZ, the molecular mechanisms responsible are unknown. Additionally, there is limited understanding of the early transcriptomic responses to neuronal activation. Here, we profile these transcriptomic responses and show that long non-coding RNAs (lncRNAs) are dynamically regulated by neuronal activation, including acute downregulation of the lncRNA Gomafu, previously implicated in brain and retinal development. Moreover, we demonstrate that Gomafu binds directly to the splicing factors QKI and SRSF1 (serine/arginine-rich splicing factor 1) and dysregulation of Gomafu leads to alternative splicing patterns that resemble those observed in SZ for the archetypal SZ-associated genes DISC1 and ERBB4. Finally, we show that Gomafu is downregulated in post-mortem cortical gray matter from the superior temporal gyrus in SZ. These results functionally link activity-regulated lncRNAs and alternative splicing in neuronal function and suggest that their dysregulation may contribute to neurological disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Profile of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium determined through serial analysis of gene expression (SAGE)

Dror Sharon; Seth Blackshaw; Constance L. Cepko; Thaddeus P. Dryja

We used the serial analysis of gene expression (SAGE) technique to catalogue and measure the relative levels of expression of the genes expressed in the human peripheral retina, macula, and retinal pigment epithelium (RPE) from one or both of two humans, aged 88 and 44 years. The cone photoreceptor contribution to all transcription in the retina was found to be similar in the macula versus the retinal periphery, whereas the rod contribution was greater in the periphery versus the macula. Genes encoding structural proteins for axons were found to be expressed at higher levels in the macula versus the retinal periphery, probably reflecting the large proportion of ganglion cells in the central retina. In comparison with the younger eye, the peripheral retina of the older eye had a substantially higher proportion of mRNAs from genes encoding proteins involved in iron metabolism or protection against oxidative damage and a substantially lower proportion of mRNAs from genes encoding proteins involved in rod phototransduction. These differences may reflect the difference in age between the two donors or merely interindividual variation. The RPE library had numerous previously unencountered tags, suggesting that this cell type has a large, idiosyncratic repertoire of expressed genes. Comparison of these libraries with 100 reported nonocular SAGE libraries revealed 89 retina-specific or enriched genes expressed at substantial levels, of which 14 are known to cause a retinal disease and 53 are RPE-specific genes. We expect that these libraries will serve as a resource for understanding the relative expression levels of genes in the retina and the RPE and for identifying additional disease genes.

Collaboration


Dive into the Seth Blackshaw's collaboration.

Top Co-Authors

Avatar

Solomon H. Snyder

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jiang Qian

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Heng Zhu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Lee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Seop Jeong

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi Xie

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Hong Wang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mardi S. Byerly

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Brian S. Clark

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge