Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seth Carbon is active.

Publication


Featured researches published by Seth Carbon.


Bioinformatics | 2009

AmiGO: online access to ontology and annotation data

Seth Carbon; Amelia Ireland; Christopher J. Mungall; ShengQiang Shu; Brad Marshall; Suzanna E. Lewis

AmiGO is a web application that allows users to query, browse and visualize ontologies and related gene product annotation (association) data. AmiGO can be used online at the Gene Ontology (GO) website to access the data provided by the GO Consortium1; it can also be downloaded and installed to browse local ontologies and annotations.2 AmiGO is free open source software developed and maintained by the GO Consortium. Availability: http://amigo.geneontology.org Download: http://sourceforge.net/projects/geneontology/ Contact: [email protected]


Nucleic Acids Research | 2008

The Gene Ontology project in 2008

Midori A. Harris; Jennifer I. Deegan; Amelia Ireland; Jane Lomax; Michael Ashburner; Susan Tweedie; Seth Carbon; Suzanna E. Lewis; Christopher J. Mungall; John Richter; Karen Eilbeck; Judith A. Blake; Alexander D. Diehl; Mary E. Dolan; Harold Drabkin; Janan T. Eppig; David P. Hill; Ni Li; Martin Ringwald; Rama Balakrishnan; Gail Binkley; J. Michael Cherry; Karen R. Christie; Maria C. Costanzo; Qing Dong; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Eurie L. Hong

The Gene Ontology (GO) project (http://www.geneontology.org/) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of ‘reference’ genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.


Nucleic Acids Research | 2017

Expansion of the Gene Ontology knowledgebase and resources

Seth Carbon; J. Chan; R. Kishore; R. Lee; H.-M. Muller; D. Raciti; K. Van Auken; Paul W. Sternberg

The Gene Ontology (GO) is a comprehensive resource of computable knowledge regarding the functions of genes and gene products. As such, it is extensively used by the biomedical research community for the analysis of -omics and related data. Our continued focus is on improving the quality and utility of the GO resources, and we welcome and encourage input from researchers in all areas of biology. In this update, we summarize the current contents of the GO knowledgebase, and present several new features and improvements that have been made to the ontology, the annotations and the tools. Among the highlights are 1) developments that facilitate access to, and application of, the GO knowledgebase, and 2) extensions to the resource as well as increasing support for descriptions of causal models of biological systems and network biology. To learn more, visit http://geneontology.org/.


PLOS Computational Biology | 2009

The Gene Ontology's Reference Genome Project: A Unified Framework for Functional Annotation across Species

Pascale Gaudet; Rex L. Chisholm; Tanya Z. Berardini; Emily Dimmer; Stacia R. Engel; Petra Fey; David P. Hill; Doug Howe; James C. Hu; Rachael P. Huntley; Varsha K. Khodiyar; Ranjana Kishore; Donghui Li; Ruth C. Lovering; Fiona M. McCarthy; Li Ni; Victoria Petri; Deborah A. Siegele; Susan Tweedie; Kimberly Van Auken; Valerie Wood; Siddhartha Basu; Seth Carbon; Mary E. Dolan; Christopher J. Mungall; Kara Dolinski; Paul D. Thomas; Michael Ashburner; Judith A. Blake; J. Michael Cherry

The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GOs logical structure and biological content.


Nucleic Acids Research | 2017

The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species.

Christopher J. Mungall; Julie McMurry; Sebastian Köhler; James P. Balhoff; Charles D. Borromeo; Matthew H. Brush; Seth Carbon; Tom Conlin; Nathan Dunn; Mark Engelstad; Erin Foster; Jean-Philippe F. Gourdine; Julius Jacobsen; Daniel Keith; Bryan Laraway; Suzanna E. Lewis; Jeremy NguyenXuan; Kent Shefchek; Nicole Vasilevsky; Zhou Yuan; Nicole L. Washington; Harry Hochheiser; Tudor Groza; Damian Smedley; Peter N. Robinson; Melissa Haendel

The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype–phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype–phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.


BMC Bioinformatics | 2014

A method for increasing expressivity of Gene Ontology annotations using a compositional approach

Rachael P. Huntley; Midori A. Harris; Yasmin Alam-Faruque; Judith A. Blake; Seth Carbon; Heiko Dietze; Emily Dimmer; Rebecca E. Foulger; David P. Hill; Varsha K. Khodiyar; Antonia Lock; Jane Lomax; Ruth C. Lovering; Prudence Mutowo-Meullenet; Tony Sawford; Kimberly Van Auken; Valerie Wood; Christopher J. Mungall

BackgroundThe Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations.ResultsThe GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector–target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions.ConclusionsThe additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism’s gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction.


F1000Research | 2014

BioJS: an open source standard for biological visualisation - its status in 2014.

Manuel Corpas; Rafael C. Jimenez; Seth Carbon; Alexander Garcia; Leyla Garcia; Tatyana Goldberg; John Gomez; Alexis Kalderimis; Suzanna E. Lewis; Ian Mulvany; Aleksandra Pawlik; Francis Rowland; Gustavo A. Salazar; Fabian Schreiber; Ian Sillitoe; William H Spooner; Anil Thanki; Jose M. Villaveces; Guy Yachdav; Henning Hermjakob

BioJS is a community-based standard and repository of functional components to represent biological information on the web. The development of BioJS has been prompted by the growing need for bioinformatics visualisation tools to be easily shared, reused and discovered. Its modular architecture makes it easy for users to find a specific functionality without needing to know how it has been built, while components can be extended or created for implementing new functionality. The BioJS community of developers currently provides a range of functionality that is open access and freely available. A registry has been set up that categorises and provides installation instructions and testing facilities at http://www.ebi.ac.uk/tools/biojs/. The source code for all components is available for ready use at https://github.com/biojs/biojs.


Genetics | 2016

Navigating the Phenotype Frontier: The Monarch Initiative

Julie McMurry; Sebastian Köhler; Nicole L. Washington; James P. Balhoff; Charles D. Borromeo; Matthew H. Brush; Seth Carbon; Tom Conlin; Nathan Dunn; Mark Engelstad; Erin Foster; Jean Philippe Gourdine; Julius Jacobsen; Daniel Keith; Bryan Laraway; Jeremy Nguyen Xuan; Kent Shefchek; Nicole Vasilevsky; Zhou Yuan; Suzanna E. Lewis; Harry Hochheiser; Tudor Groza; Damian Smedley; Peter N. Robinson; Christopher J. Mungall; Melissa Haendel

The principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.e. phenotypes. To solve challenging disease problems we need to unify the heterogeneous data that relates genomics to disease traits. Without a big-picture view of phenotypic data, many questions in genetics are difficult or impossible to answer. The Monarch Initiative (https://monarchinitiative.org) provides tools for genotype-phenotype analysis, genomic diagnostics, and precision medicine across broad areas of disease.


Nucleic Acids Research | 2018

The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics

Laurel Cooper; Austin Meier; Marie-Angélique Laporte; Justin Elser; Christopher J. Mungall; Brandon T. Sinn; Dario Cavaliere; Seth Carbon; Nathan Dunn; Barry Smith; Botong Qu; Justin Preece; Eugene Zhang; Sinisa Todorovic; Georgios V. Gkoutos; John H. Doonan; Dennis W. Stevenson; Elizabeth Arnaud; Pankaj Jaiswal

Abstract The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository.


Methods of Molecular Biology | 2017

Get GO! Retrieving GO Data Using AmiGO, QuickGO, API, Files, and Tools.

Monica Munoz-Torres; Seth Carbon

The Gene Ontology Consortium (GOC) produces a wealth of resources widely used throughout the scientific community. In this chapter, we discuss the different ways in which researchers can access the resources of the GOC. We here share details about the mechanics of obtaining GO annotations, both by manually browsing, querying, and downloading data from the GO website, as well as computationally accessing the resources from the command line, including the ability to restrict the data being retrieved to subsets with only certain attributes.

Collaboration


Dive into the Seth Carbon's collaboration.

Top Co-Authors

Avatar

Christopher J. Mungall

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Suzanna E. Lewis

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nathan Dunn

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Justin Elser

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerie Wood

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge