Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seth D'Imperio is active.

Publication


Featured researches published by Seth D'Imperio.


Applied and Environmental Microbiology | 2004

Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National Park

Jessica Donahoe-Christiansen; Seth D'Imperio; Colin R. Jackson; William P. Inskeep; Timothy R. McDermott

ABSTRACT An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H2 as its sole energy source and had an optimum temperature of 55 to 60°C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and was strongly inhibited by H2S.


Applied and Environmental Microbiology | 2008

Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs

Seth D'Imperio; Corinne R. Lehr; Harry Oduro; Greg K. Druschel; Michael Kühl; Timothy R. McDermott

ABSTRACT Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of availability, apparent in situ consumption rates, and growth-supporting energy.


Applied and Environmental Microbiology | 2005

Poly(A) Polymerase Modification and Reverse Transcriptase PCR Amplification of Environmental RNA

Lina M. Botero; Seth D'Imperio; Mark D. Burr; Timothy R. McDermott; Mark J. Young; Daniel J. Hassett

ABSTRACT We describe a combination of two established techniques for a novel application for constructing full-length cDNA clone libraries from environmental RNA. The cDNA was cloned without the use of prescribed primers that target specific genes, and the procedure did not involve random priming. Purified RNA was first modified by addition of a poly(A) tail and then was amplified by using a commercially available reverse transcriptase PCR (RT-PCR) cDNA synthesis kit. To demonstrate the feasibility of this approach, a cDNA clone library was constructed from size-fractionated RNA (targeting 16S rRNA) purified from a geothermally heated soil in Yellowstone National Park in Wyoming. The resulting cDNA library contained clones representing Bacteria and Eukarya taxa and several mRNAs. There was no exact clone match between this library and a separate cDNA library generated from an RT-PCR performed with unmodified rRNA and Bacteria-specific forward and universal reverse primers that were designed from cultivated organisms; however, both libraries contained representatives of the Firmicutes and the α-Proteobacteria. Unexpectedly, there were no Archaea clones in the library generated from poly(A)-modified RNA. Additional RT-PCRs performed with universal and Archaea-biased primers and unmodified RNA demonstrated the presence of novel Archaea in the soil. Experiments with pure cultures of Sulfolobus solfataricus and Halobacterium halobium revealed that some Archaea rRNA may not be a suitable substrate for the poly(A) tail modification step. The protocol described here demonstrates the feasibility of directly accessing prokaryote RNA (rRNA and/or mRNA) in environmental samples, but the results also illustrate potentially important problems.


Applied and Environmental Microbiology | 2007

Autecology of an Arsenite Chemolithotroph: Sulfide Constraints on Function and Distribution in a Geothermal Spring

Seth D'Imperio; Corinne R. Lehr; Michele Breary; Timothy R. McDermott

ABSTRACT Previous studies in an acid-sulfate-chloride spring in Yellowstone National Park found that microbial arsenite [As(III)] oxidation is absent in regions of the spring outflow channel where H2S exceeds ∼5 μM and served as a backdrop for continued efforts in the present study. Ex situ assays with microbial mat samples demonstrated immediate As(III) oxidation activity when H2S was absent or at low concentrations, suggesting the presence of As(III) oxidase enzymes that could be reactivated if H2S is removed. Cultivation experiments initiated with mat samples taken from along the H2S gradient in the outflow channel resulted in the isolation of an As(III)-oxidizing chemolithotroph from the low-H2S region of the gradient. The isolate was phylogenetically related to Acidicaldus and was characterized in vitro for spring-relevant properties, which were then compared to its distribution pattern in the spring as determined by denaturing gradient gel electrophoresis and quantitative PCR. While neither temperature nor oxygen requirements appeared to be related to the occurrence of this organism within the outflow channel, H2S concentration appeared to be an important constraint. This was verified by in vitro pure-culture modeling and kinetic experiments, which suggested that H2S inhibition of As(III) oxidation is uncompetitive in nature. In summary, the studies reported herein illustrate that H2S is a potent inhibitor of As(III) oxidation and will influence the niche opportunities and population distribution of As(III) chemolithotrophs.


Applied and Environmental Microbiology | 2010

Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

Erin K. Field; Seth D'Imperio; Amber R. Miller; Michael R. VanEngelen; Robin Gerlach; Brady D. Lee; William A. Apel; Brent M. Peyton

ABSTRACT Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.


Journal of Phycology | 2007

CYANIDIA (CYANIDIALES) POPULATION DIVERSITY AND DYNAMICS IN AN ACID-SULFATE-CHLORIDE SPRING IN YELLOWSTONE NATIONAL PARK†

Corinne R. Lehr; Shaun D. Frank; T. B. Norris; Seth D'Imperio; Alexey Kalinin; Julie A. Toplin; Richard W. Castenholz; Timothy R. McDermott

The unicellular eukaryotic algae Cyanidium, Galdieria, and Cyanidioschyzon (herein referred to as “cyanidia”) are the only photoautotrophs occurring in acidic (pH<4.0) geothermal environments at temperatures above 40°C. In Yellowstone National Park (YNP), we examined an annual event we refer to as “mat decline,” where cyanidial mats undergo a seasonably defined color fading. Monthly sampling of chemical, physical, and biological features revealed that spring aqueous chemistry was essentially invariant over the 1‐year sampling period. However, multiple regression analysis suggested that a significant proportion of algal most probable number (MPN) count variation could be explained by water temperature and UV–visible (VIS) light exposure. Irradiance manipulations (filtering) were then coupled with 14CO2 incorporation experiments to directly demonstrate UV inhibition of photosynthesis. Population dynamics were also evident in 18S rDNA PCR clone libraries, which were different in composition at MPN maxima and minima, and again evident in PCR‐amplified chloroplast genomic short sequence repeat (SSR) analysis. PCR‐cloned SSRs of the YNP isolates and mats were very similar to Cyanidioschyzon merolae Luca, Taddei et Varano, although distance analysis could distinguish the YNP cyanidia from the genome sequenced C. merolae that was isolated in Italy. Unexpectedly, while phylogenetic analysis of 18S rDNA sequences and SSR sequences derived from YNP cyanidial mats and pure cultures suggested these algae are most closely related to C. merolae (99.7% identity), cell morphology was consistent with the genera Galdieria and Cyanidium.


Applied and Environmental Microbiology | 2009

Cloning and In Situ Expression Studies of the Hydrogenobaculum Arsenite Oxidase Genes

Scott Clingenpeel; Seth D'Imperio; Harry Oduro; Greg K. Druschel; Timothy R. McDermott

ABSTRACT Novel arsenite [As(III)] oxidase structural genes (aoxAB) were cloned from Hydrogenobaculum bacteria isolated from an acidic geothermal spring. Reverse transcriptase PCR demonstrated expression throughout the outflow channel, and the aoxB cDNA clones exhibited distribution patterns relative to the physicochemical gradients in the spring. Microelectrode analyses provided evidence of quantitative As(III) transformation within the microbial mat.


Applied and Environmental Microbiology | 2013

Comparative Genomic Analysis of Phylogenetically Closely Related Hydrogenobaculum sp. Isolates from Yellowstone National Park

Christine Romano; Seth D'Imperio; Tanja Woyke; Konstantinos Mavromatis; Roger S. Lasken; Everett L. Shock; Timothy R. McDermott

ABSTRACT We describe the complete genome sequences of four closely related Hydrogenobaculum sp. isolates (≥99.7% 16S rRNA gene identity) that were isolated from the outflow channel of Dragon Spring (DS), Norris Geyser Basin, in Yellowstone National Park (YNP), WY. The genomes range in size from 1,552,607 to 1,552,931 bp, contain 1,667 to 1,676 predicted genes, and are highly syntenic. There are subtle differences among the DS isolates, which as a group are different from Hydrogenobaculum sp. strain Y04AAS1 that was previously isolated from a geographically distinct YNP geothermal feature. Genes unique to the DS genomes encode arsenite [As(III)] oxidation, NADH-ubiquinone-plastoquinone (complex I), NADH-ubiquinone oxidoreductase chain, a DNA photolyase, and elements of a type II secretion system. Functions unique to strain Y04AAS1 include thiosulfate metabolism, nitrate respiration, and mercury resistance determinants. DS genomes contain seven CRISPR loci that are almost identical but are different from the single CRISPR locus in strain Y04AAS1. Other differences between the DS and Y04AAS1 genomes include average nucleotide identity (94.764%) and percentage conserved DNA (80.552%). Approximately half of the genes unique to Y04AAS1 are predicted to have been acquired via horizontal gene transfer. Fragment recruitment analysis and marker gene searches demonstrated that the DS metagenome was more similar to the DS genomes than to the Y04AAS1 genome, but that the DS community is likely comprised of a continuum of Hydrogenobaculum genotypes that span from the DS genomes described here to an Y04AAS1-like organism, which appears to represent a distinct ecotype relative to the DS genomes characterized.


Applied Geochemistry | 2016

Microbial community signature in Lake Coeur d’Alene: Association of environmental variables and toxic heavy metal phases

James G. Moberly; Seth D'Imperio; Albert E. Parker; Brent M. Peyton


Corrosion | 2010

Utilization Of A 16S Rrna Gene Microarray To Analyze The Efficacy Of Oil And Gas Industry Bacteria Culture Media

Jennifer B. Wrangham; Joseph E. Penkala; Seth D'Imperio; Brent M. Peyton; Kenneth G. Wunch

Collaboration


Dive into the Seth D'Imperio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg K. Druschel

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey Kalinin

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Brady D. Lee

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Hassett

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge