Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seth G. N. Grant is active.

Publication


Featured researches published by Seth G. N. Grant.


Nature Neuroscience | 2000

Proteomic analysis of NMDA receptor–adhesion protein signaling complexes

Holger Husi; Malcolm Ward; Jyoti S. Choudhary; Walter P. Blackstock; Seth G. N. Grant

N-methyl-D-aspartate receptors (NMDAR) mediate long-lasting changes in synapse strength via downstream signaling pathways. We report proteomic characterization with mass spectrometry and immunoblotting of NMDAR multiprotein complexes (NRC) isolated from mouse brain. The NRC comprised 77 proteins organized into receptor, adaptor, signaling, cytoskeletal and novel proteins, of which 30 are implicated from binding studies and another 19 participate in NMDAR signaling. NMDAR and metabotropic glutamate receptor subtypes were linked to cadherins and L1 cell-adhesion molecules in complexes lacking AMPA receptors. These neurotransmitter–adhesion receptor complexes were bound to kinases, phosphatases, GTPase-activating proteins and Ras with effectors including MAPK pathway components. Several proteins were encoded by activity-dependent genes. Genetic or pharmacological interference with 15 NRC proteins impairs learning and with 22 proteins alters synaptic plasticity in rodents. Mutations in three human genes (NF1, Rsk-2, L1) are associated with learning impairments, indicating the NRC also participates in human cognition.


Nature | 1998

Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein

Martine Migaud; Paul Charlesworth; Maureen Dempster; Lorna C. Webster; Ayako M. Watabe; Michael Makhinson; Yong He; Mark Ramsay; Richard G. M. Morris; John H. Morrison; Thomas J. O'Dell; Seth G. N. Grant

Specific patterns of neuronal firing induce changes in synaptic strength that may contribute to learning and memory. If the postsynaptic NMDA (N-methyl-D-aspartate) receptors are blocked, long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and the learning of spatial information are prevented. The NMDA receptor can bind a protein known as postsynaptic density-95 (PSD-95), which may regulate the localization of and/or signalling by the receptor. In mutant mice lacking PSD-95, the frequency function of NMDA-dependent LTP and LTD is shifted to produce strikingly enhanced LTP at different frequencies of synaptic stimulation. In keeping with neural-network models that incorporate bidirectional learning rules, this frequency shift is accompanied by severely impaired spatial learning. Synaptic NMDA-receptor currents, subunit expression, localization and synaptic morphology are all unaffected in the mutant mice. PSD-95 thus appears to be important in coupling the NMDA receptor to pathways that control bidirectional synaptic plasticity and learning.


Nature | 2012

An anatomically comprehensive atlas of the adult human brain transcriptome

Michael Hawrylycz; Ed Lein; Angela L. Guillozet-Bongaarts; Elaine H. Shen; Lydia Ng; Jeremy A. Miller; Louie N. van de Lagemaat; Kimberly A. Smith; Amanda Ebbert; Zackery L. Riley; Chris Abajian; Christian F. Beckmann; Amy Bernard; Darren Bertagnolli; Andrew F. Boe; Preston M. Cartagena; M. Mallar Chakravarty; Mike Chapin; Jimmy Chong; Rachel A. Dalley; Barry Daly; Chinh Dang; Suvro Datta; Nick Dee; Tim Dolbeare; Vance Faber; David Feng; David Fowler; Jeff Goldy; Benjamin W. Gregor

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Nature | 2014

De novo mutations in schizophrenia implicate synaptic networks

Menachem Fromer; Andrew Pocklington; David H. Kavanagh; Hywel Williams; Sarah Dwyer; Padhraig Gormley; Lyudmila Georgieva; Elliott Rees; Priit Palta; Douglas M. Ruderfer; Noa Carrera; Isla Humphreys; Jessica S. Johnson; Panos Roussos; Douglas D. Barker; Eric Banks; Vihra Milanova; Seth G. N. Grant; Eilis Hannon; Samuel A. Rose; K D Chambert; Milind Mahajan; Edward M. Scolnick; Jennifer L. Moran; George Kirov; Aarno Palotie; Steven A. McCarroll; Peter Holmans; Pamela Sklar; Michael John Owen

Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case–control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.


Nature | 2014

A polygenic burden of rare disruptive mutations in schizophrenia

Shaun Purcell; Jennifer L. Moran; Menachem Fromer; Douglas M. Ruderfer; Nadia Solovieff; Panos Roussos; Colm O'Dushlaine; K D Chambert; Sarah E. Bergen; Anna K. Kähler; Laramie Duncan; Eli A. Stahl; Giulio Genovese; Esperanza Fernández; Mark O. Collins; Noboru H. Komiyama; Jyoti S. Choudhary; Patrik K. E. Magnusson; Eric Banks; Khalid Shakir; Kiran Garimella; Timothy Fennell; Mark DePristo; Seth G. N. Grant; Stephen J. Haggarty; Stacey Gabriel; Edward M. Scolnick; Eric S. Lander; Christina M. Hultman; Patrick F. Sullivan

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Neuron | 2006

Arc/Arg3.1 Is Essential for the Consolidation of Synaptic Plasticity and Memories

Niels Plath; Ora Ohana; Björn Dammermann; M. L. Errington; Dietmar Schmitz; Christina Gross; Xiaosong Mao; Arne Engelsberg; Claudia Mahlke; Hans Welzl; Ursula Kobalz; Anastasia Stawrakakis; Esperanza Fernández; Robert Waltereit; Anika Bick-Sander; Eric Therstappen; Sam F. Cooke; Veronique Blanquet; Wolfgang Wurst; Benedikt Salmen; Michael R. Bösl; Hans-Peter Lipp; Seth G. N. Grant; T.V.P. Bliss; David P. Wolfer; Dietmar Kuhl

Arc/Arg3.1 is robustly induced by plasticity-producing stimulation and specifically targeted to stimulated synaptic areas. To investigate the role of Arc/Arg3.1 in synaptic plasticity and learning and memory, we generated Arc/Arg3.1 knockout mice. These animals fail to form long-lasting memories for implicit and explicit learning tasks, despite intact short-term memory. Moreover, they exhibit a biphasic alteration of hippocampal long-term potentiation in the dentate gyrus and area CA1 with an enhanced early and absent late phase. In addition, long-term depression is significantly impaired. Together, these results demonstrate a critical role for Arc/Arg3.1 in the consolidation of enduring synaptic plasticity and memory storage.


Molecular Psychiatry | 2012

De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.

George Kirov; Andrew Pocklington; Peter Alan Holmans; Dobril Ivanov; Masashi Ikeda; Douglas M. Ruderfer; Jennifer L. Moran; Draga Toncheva; Lyudmila Georgieva; Detelina Grozeva; Marija Fjodorova; Rebecca Louise Wollerton; Elliott Rees; Ivan Nikolov; L N van de Lagemaat; Àlex Bayés; Esperanza Fernández; Pall Olason; Yvonne Böttcher; Noboru H. Komiyama; Mark O. Collins; Jyoti S. Choudhary; Kari Stefansson; Hreinn Stefansson; Seth G. N. Grant; Shaun Purcell; Pamela Sklar; Michael Conlon O'Donovan; Michael John Owen

A small number of rare, recurrent genomic copy number variants (CNVs) are known to substantially increase susceptibility to schizophrenia. As a consequence of the low fecundity in people with schizophrenia and other neurodevelopmental phenotypes to which these CNVs contribute, CNVs with large effects on risk are likely to be rapidly removed from the population by natural selection. Accordingly, such CNVs must frequently occur as recurrent de novo mutations. In a sample of 662 schizophrenia proband–parent trios, we found that rare de novo CNV mutations were significantly more frequent in cases (5.1% all cases, 5.5% family history negative) compared with 2.2% among 2623 controls, confirming the involvement of de novo CNVs in the pathogenesis of schizophrenia. Eight de novo CNVs occurred at four known schizophrenia loci (3q29, 15q11.2, 15q13.3 and 16p11.2). De novo CNVs of known pathogenic significance in other genomic disorders were also observed, including deletion at the TAR (thrombocytopenia absent radius) region on 1q21.1 and duplication at the WBS (Williams–Beuren syndrome) region at 7q11.23. Multiple de novos spanned genes encoding members of the DLG (discs large) family of membrane-associated guanylate kinases (MAGUKs) that are components of the postsynaptic density (PSD). Two de novos also affected EHMT1, a histone methyl transferase known to directly regulate DLG family members. Using a systems biology approach and merging novel CNV and proteomics data sets, systematic analysis of synaptic protein complexes showed that, compared with control CNVs, case de novos were significantly enriched for the PSD proteome (P=1.72 × 10−6). This was largely explained by enrichment for members of the N-methyl-D-aspartate receptor (NMDAR) (P=4.24 × 10−6) and neuronal activity-regulated cytoskeleton-associated protein (ARC) (P=3.78 × 10−8) postsynaptic signalling complexes. In an analysis of 18 492 subjects (7907 cases and 10 585 controls), case CNVs were enriched for members of the NMDAR complex (P=0.0015) but not ARC (P=0.14). Our data indicate that defects in NMDAR postsynaptic signalling and, possibly, ARC complexes, which are known to be important in synaptic plasticity and cognition, play a significant role in the pathogenesis of schizophrenia.


Nature | 1997

A role for the Ras signalling pathway in synaptic transmission and long-term memory.

Riccardo Brambilla; Nerina Gnesutta; Liliana Minichiello; Gail White; Alistair J. Roylance; Caroline E. Herron; Mark Ramsey; David P. Wolfer; Vincenzo Cestari; Clelia Rossi-Arnaud; Seth G. N. Grant; Paul F. Chapman; Hans-Peter Lipp; Emmapaola Sturani; Rdiger Klein

Members of the Ras subfamily of small guanine-nucleotide-binding proteins are essential for controlling normal and malignant cell proliferation as well as cell differentiation. The neuronal-specific guanine-nucleotide-exchange factor, Ras-GRF/CDC25Mm (refs 2,3,4), induces Ras signalling in response to Ca2+ influx and activation of G-protein-coupled receptors in vitro, suggesting that it plays a role in neurotransmission and plasticity in vivo. Here we report that mice lacking Ras-GRF are impaired in the process of memory consolidation, as revealed by emotional conditioning tasks that require the function of the amygdala; learning and short-term memory are intact. Electrophysiological measurements in the basolateral amygdala reveal that long-term plasticity is abnormal in mutant mice. In contrast, Ras-GRF mutants do not reveal major deficits in spatial learning tasks such as the Morris water maze, a test that requires hippocampal function. Consistent with apparently normal hippocampal functions, Ras-GRF mutants show normal NMDA (N-methyl-D-aspartate) receptor-dependent long-term potentiation in this structure. These results implicate Ras-GRF signalling via the Ras/MAP kinase pathway in synaptic events leading to formation of long-term memories.


Neuron | 1997

Mutant mice and neuroscience: Recommendations concerning genetic background

Alcino J. Silva; Elizabeth Simpson; Joseph S. Takahashi; Hans Peter Lipp; Shigetada Nakanishi; Jeanne M. Wehner; Karl Peter Giese; Tim Tully; Ted Abel; Paul F. Chapman; Kevin Fox; Seth G. N. Grant; Shigeyoshi Itohara; Richard Lathe; Mark Mayford; James O McNamara; Roger J. Morris; Marina R. Picciotto; John C. Roder; Hee Sup Shin; Paul A. Slesinger; Daniel R. Storm; Michael P. Stryker; Susumu Tonegawa; Yanyan Wang; David P. Wolfer

The following scientists made significant contributions to the recommendations in this article:


Cell | 1998

Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo

Rolf Sprengel; Bettina Suchanek; Carla Amico; Rossella Brusa; Nail Burnashev; Andrei Rozov; OØivind Hvalby; Vidar Jensen; Ole Paulsen; Per Andersen; Jeansok J. Kim; Richard F. Thompson; William Sun; Lorna C. Webster; Seth G. N. Grant; Jens Eilers; Arthur Konnerth; Jianying Li; James O McNamara; Peter H. Seeburg

NMDA receptors, a class of glutamate-gated cation channels with high Ca2+ conductance, mediate fast transmission and plasticity of central excitatory synapses. We show here that gene-targeted mice expressing NMDA receptors without the large intracellular C-terminal domain of any one of three NR2 subunits phenotypically resemble mice made deficient in that particular subunit. Mice expressing the NR2B subunit in a C-terminally truncated form (NR2B(deltaC/deltaC) mice) die perinatally. NR2A(deltaC/deltaC) mice are viable but exhibit impaired synaptic plasticity and contextual memory. These and NR2C(deltaC/deltaC) mice display deficits in motor coordination. C-terminal truncation of NR2 subunits does not interfere with the formation of gateable receptor channels that can be synaptically activated. Thus, the phenotypes of our mutants appear to reflect defective intracellular signaling.

Collaboration


Dive into the Seth G. N. Grant's collaboration.

Top Co-Authors

Avatar

Noboru H. Komiyama

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jyoti S. Choudhary

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Mark O. Collins

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Mike D R Croning

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Maksym V. Kopanitsa

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Àlex Bayés

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Marcelo P. Coba

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge