Seth M. Barribeau
East Carolina University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seth M. Barribeau.
Genome Biology | 2010
Nicole M. Gerardo; Boran Altincicek; Caroline Anselme; Hagop S. Atamian; Seth M. Barribeau; Martin de Vos; Elizabeth J. Duncan; Jay D. Evans; Toni Gabaldón; Murad Ghanim; Adelaziz Heddi; Isgouhi Kaloshian; Amparo Latorre; Andrés Moya; Atsushi Nakabachi; Benjamin J. Parker; Vincente Pérez-Brocal; Miguel Pignatelli; Yvan Rahbé; John S Ramsey; Chelsea J. Spragg; Javier Tamames; Daniel Tamarit; Cecilia Tamborindeguy; Caroline Vincent-Monegat; Andreas Vilcinskas
BackgroundRecent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models.ResultsStrikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes.ConclusionsThe absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection.
Science | 2015
Karen M. Kapheim; Hailin Pan; Cai Li; Daniela Puiu; Tanja Magoc; Hugh M. Robertson; Matthew E. Hudson; Aarti Venkat; Brielle J. Fischman; Alvaro G. Hernandez; Mark Yandell; Daniel Ence; Carson Holt; George D. Yocum; William P. Kemp; Jordi Bosch; Robert M. Waterhouse; Evgeny M. Zdobnov; Eckart Stolle; F. Bernhard Kraus; Sophie Helbing; Robin F. A. Moritz; Karl M. Glastad; Brendan G. Hunt; Michael A. D. Goodisman; Frank Hauser; Cornelis J. P. Grimmelikhuijzen; Daniel G. Pinheiro; Francis Morais Franco Nunes; Michelle Soares
For bees, many roads lead to social harmony Eusociality, where workers sacrifice their reproductive rights to support the colony, has evolved repeatedly and represents the most evolved form of social evolution in insects. Kapheim et al. looked across the genomes of 10 bee species with varying degrees of sociality to determine the underlying genomic contributions. No one genomic path led to eusociality, but similarities across genomes were seen in features such as increases in gene regulation and methylation. It also seems that selection pressures relaxed after the emergence of complex sociality. Science, this issue p. 1139 Social evolution in bees has followed diverse genomic paths but shares genomic patterns. The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.
Trends in Ecology and Evolution | 2011
Benjamin J. Parker; Seth M. Barribeau; Alice M. Laughton; Jacobus C. de Roode; Nicole M. Gerardo
After parasite infection, invertebrates activate immune system-based defenses such as encapsulation and the signaling pathways of the innate immune system. However, hosts are often able to defend against parasites without using these mechanisms. The non-immunological defenses, such as behaviors that prevent or combat infection, symbiont-mediated defense, and fecundity compensation, are often ignored but can be important in host-parasite dynamics. We review recent studies showing that heritable variation in these traits exists among individuals, and that they are costly to activate and maintain. We also discuss findings from genome annotation and expression studies to show how immune system-based and non-immunological defenses interact. Placing these studies into an evolutionary framework emphasizes their importance for future studies of host-parasite coevolution.
Genome Biology | 2015
Seth M. Barribeau; Louis du Plessis; Mark J. F. Brown; Severine D. Buechel; Kaat Cappelle; James C. Carolan; Olivier Christiaens; Thomas J. Colgan; Silvio Erler; Jay D. Evans; Sophie Helbing; Elke Karaus; H. Michael G. Lattorff; Monika Marxer; Ivan Meeus; Kathrin Näpflin; Jin-Zhi Niu; Regula Schmid-Hempel; Guy Smagghe; Robert M. Waterhouse; Na Yu; Evgeny M. Zdobnov; Paul Schmid-Hempel
BackgroundSociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris.ResultsWe find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades.ConclusionsThe similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Seth M. Barribeau; Louis du Plessis; Paul Schmid-Hempel
Significance Some genotypes of parasites can infect some genotypes of hosts but not others, whereas hosts also vary in susceptibility to a given parasite genotype. Variation in genes important for defenses against parasites could produce this specificity. Here, we find that variation in gene expression depended on both the genotype of the host and the genotype of the parasite. Moreover, we found that bumblebees that were exposed to infectious genotypes of a trypanosome parasite had low gene expression of immune genes but upregulation of genes that control expression. A poorly infecting parasite genotype, however, induced expression of immune genes. These results suggest that variation in the regulation of gene expression may also contribute to producing genotype-by-genotype specificity. In many systems, host–parasite evolutionary dynamics have led to the emergence and maintenance of diverse parasite and host genotypes within the same population. Genotypes vary in key attributes: Parasite genotypes vary in ability to infect, host genotypes vary in susceptibility, and infection outcome is frequently the result of both parties’ genotypic identities. These host–parasite genotype-by-genotype (GH × GP) interactions influence evolutionary and ecological dynamics in important ways. Interactions can be produced through genetic variation; however, here, we assess the role of variable gene expression as an additional source of GH × GP interactions. The bumblebee Bombus terrestris and its trypanosome gut parasite Crithidia bombi are a model system for host–parasite matching. Full-transcriptome sequencing of the bumblebee host revealed that different parasite genotypes indeed induce fundamentally different host expression responses and host genotypes vary in their responses to the infecting parasite genotype. It appears that broadly and successfully infecting parasite genotypes lead to reduced host immune gene expression relative to unexposed bees but induce the expression of genes responsible for controlling gene expression. Contrastingly, a poorly infecting parasite genotype induced the expression of immunologically important genes, including antimicrobial peptides. A targeted expression assay confirmed the transcriptome results and also revealed strong host genotype effects. In all, the expression of a number of genes depends on the host genotype and the parasite genotype and the interaction between both host and parasite genotypes. These results suggest that alongside sequence variation in coding immunological genes, variation that controls immune gene expression can also produce patterns of host–parasite specificity.
Mbio | 2016
Philipp Engel; Waldan K. Kwong; Quinn S. McFrederick; Kirk E. Anderson; Seth M. Barribeau; James Angus Chandler; R. Scott Cornman; Jacques Dainat; Joachim R. de Miranda; Vincent Doublet; Olivier Emery; Jay D. Evans; Laurent Farinelli; Michelle L. Flenniken; Fredrik Granberg; Juris A. Grasis; Laurent Gauthier; Juliette Hayer; Hauke Koch; Sarah D. Kocher; Vincent G. Martinson; Nancy A. Moran; Monica Munoz-Torres; Irene L. G. Newton; Robert J. Paxton; Eli Powell; Paul Schmid-Hempel; Regula Schmid-Hempel; Se Jin Song; Ryan S. Schwarz
ABSTRACT As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.
Proceedings of the Royal Society B: Biological Sciences | 2014
Franziska S. Brunner; Paul Schmid-Hempel; Seth M. Barribeau
Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions.
Molecular Ecology | 2012
Justine I. Lyons; Amanda A. Pierce; Seth M. Barribeau; Eleanore D. Sternberg; Andrew J. Mongue; Jacobus C. de Roode
Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America.
PLOS ONE | 2013
Franziska S. Brunner; Paul Schmid-Hempel; Seth M. Barribeau
Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging workers. We deliberately included natural variation of the host “environment” by using bees from colonies collected in two locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites). While only the antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise.
BMC Genomics | 2017
Vincent Doublet; Yvonne Poeschl; Andreas Gogol-Döring; Cédric Alaux; Desiderato Annoscia; Christian Aurori; Seth M. Barribeau; Oscar C. Bedoya-Reina; Mark J. F. Brown; James C. Bull; Michelle L. Flenniken; David A. Galbraith; Elke Genersch; Sebastian Gisder; Ivo Grosse; Holly L. Holt; Dan Hultmark; H. M. G. Lattorff; Y. Le Conte; Fabio Manfredini; Dino P. McMahon; Robin F. A. Moritz; Francesco Nazzi; Elina L. Niño; Katja Nowick; R.P. van Rij; Robert J. Paxton; Christina M. Grozinger
BackgroundOrganisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.ResultsWe identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.ConclusionsOur meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.