Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seth M. Rudman is active.

Publication


Featured researches published by Seth M. Rudman.


Proceedings of the Royal Society B: Biological Sciences | 2015

Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem

Seth M. Rudman; Mariano A. Rodriguez-Cabal; Adrian Stier; Takuya Sato; Julian Heavyside; Rana W. El-Sabaawi; Gregory M. Crutsinger

Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.


Current Biology | 2016

Ecological Impacts of Reverse Speciation in Threespine Stickleback.

Seth M. Rudman; Dolph Schluter

Young species are highly prone to extinction via increased gene flow after human-caused environmental changes. This mechanism of biodiversity loss, often termed reverse speciation or introgressive extinction, is of exceptional interest because the parent species are typically highly differentiated ecologically. Reverse speciation events are potentially powerful case studies for the role of evolution in driving ecological changes, as the phenotypic shifts associated with introgressive extinction can be large and they occur over particularly short timescales. Furthermore, reverse speciation can lead to novel phenotypes, which may in turn produce novel ecological effects. Here we investigate the ecological shift associated with reverse speciation in threespine stickleback fish using a field study and a replicated experiment. We find that an instance of introgressive extinction had cascading ecological consequences that altered the abundance of both aquatic prey and the pupating aquatic insects that emerged into the terrestrial ecosystem. The community and ecosystem impacts of reverse speciation were novel, and yet they were also predictable based on ecological and morphological considerations. The study suggests that knowledge about the community ecology and changes in functional morphology of a dominant species may lead to some predictive power for the ecological effects of evolutionary change. Moreover, the rapid nature and resultant ecological impacts associated with reverse speciation demonstrates the interplay between biodiversity, evolutionary change, and ecosystem function.


Oecologia | 2016

Investment in boney defensive traits alters organismal stoichiometry and excretion in fish

Rana W. El-Sabaawi; Misha L. Warbanski; Seth M. Rudman; Rachel A. Hovel; Blake Matthews

Understanding how trait diversification alters ecosystem processes is an important goal for ecological and evolutionary studies. Ecological stoichiometry provides a framework for predicting how traits affect ecosystem function. The growth rate hypothesis of ecological stoichiometry links growth and phosphorus (P) body composition in taxa where nucleic acids are a significant pool of body P. In vertebrates, however, most of the P is bound within bone, and organisms with boney structures can vary in terms of the relative contributions of bones to body composition. Threespine stickleback populations have substantial variation in boney armour plating. Shaped by natural selection, this variation provides a model system to study the links between evolution of bone content, elemental body composition, and P excretion. We measure carbon:nitrogen:P body composition from stickleback populations that vary in armour phenotype. We develop a mechanistic mass-balance model to explore factors affecting P excretion, and measure P excretion from two populations with contrasting armour phenotypes. Completely armoured morphs have higher body %P but excrete more P per unit body mass than other morphs. The model suggests that such differences are driven by phenotypic differences in P intake as well as body %P composition. Our results show that while investment in boney traits alters the elemental composition of vertebrate bodies, excretion rates depend on how acquisition and assimilation traits covary with boney trait investment. These results also provide a stoichiometric hypothesis to explain the repeated loss of boney armour in threespine sticklebacks upon colonizing freshwater ecosystems.


Trends in Ecology and Evolution | 2017

Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services

Seth M. Rudman; Maayan Kreitzman; Kai M. A. Chan; Dolph Schluter

Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services.


Molecular Ecology | 2014

Testing a ‘genes‐to‐ecosystems’ approach to understanding aquatic–terrestrial linkages

Gregory M. Crutsinger; Seth M. Rudman; Mariano A. Rodriguez-Cabal; Athena D. McKown; Takuya Sato; A. Andrew M. MacDonald; Julian Heavyside; Armando Geraldes; Edmund Hart; Carri J. LeRoy; Rana W. El-Sabaawi

A ‘genes‐to‐ecosystems’ approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome‐wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These ‘after‐life’ effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic–terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes.


Molecular Ecology | 2016

Responses to simulated winter conditions differ between threespine stickleback ecotypes

Taylor C. Gibbons; Seth M. Rudman; Patricia M. Schulte

Abiotic factors can act as barriers to colonization and drive local adaptation. During colonization, organisms may cope with changes in abiotic factors using existing phenotypic plasticity, but the role of phenotypic plasticity in assisting or hindering the process of local adaptation remains unclear. To address these questions, we explore the role of winter conditions in driving divergence during freshwater colonization and the effects of plasticity on local adaptation in ancestral marine and derived freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We found that freshwater‐resident stickleback had greater tolerance of acute exposure to low temperatures than marine stickleback, but these differences were abolished after acclimation to simulated winter conditions (9L:15D photoperiod at 4 °C). Plasma chloride levels differed between the ecotypes, but showed a similar degree of plasticity between ecotypes. Gene expression of the epithelial calcium channel (ECaC) differed between ecotypes, with the freshwater ecotype demonstrating substantially greater expression than the marine ecotype, but there was no plasticity in this trait under these conditions in either ecotype. In contrast, growth (assessed as final mass) and the expression of an isoform of the electroneutral Na+/H+ exchanger (NHE3) exhibited substantial change with temperature in the marine ecotype that was not observed in the freshwater ecotype under the conditions tested here, which is consistent with evolution of these traits by a process such as genetic assimilation. These data demonstrate substantial divergence in many of these traits between freshwater and marine stickleback, but also illustrate the complexity of possible relationships between plasticity and local adaptation.


Scientific Reports | 2017

Low temperature and low salinity drive putatively adaptive growth differences in populations of threespine stickleback

Taylor C. Gibbons; Seth M. Rudman; Patricia M. Schulte

Colonisation can expose organisms to novel combinations of abiotic and biotic factors and drive adaptive divergence. Yet, studies investigating the interactive effects of multiple abiotic factors on the evolution of physiological traits remain rare. Here we examine the effects of low salinity, low temperature, and their interaction on the growth of three North American populations of threespine stickleback (Gasterosteus aculeatus). In north-temperate freshwater habitats, stickleback populations experience a combination of low salinity and low winter temperatures that are not experienced by the ancestral marine and anadromous populations. Here we show that both salinity and temperature, and their interaction, have stronger negative effects on marine and anadromous populations than a freshwater population. Freshwater stickleback showed only a ~20% reduction in specific growth rate when exposed to 4 °C, while marine and anadromous stickleback showed sharp declines (82% and 74% respectively) under these conditions. The modest decreases in growth in freshwater stickleback in fresh water in the cold strongly suggest that this population has the capacity for physiological compensation to offset the negative thermodynamic effects of low temperature on growth. These results are suggestive of adaptive evolution in response to the interactive effects of low salinity and low temperature during freshwater colonisation.


Journal of Evolutionary Biology | 2018

Differential predation alters pigmentation in threespine stickleback (Gasterosteus aculeatus)

Michelle Gygax; Ana K. Rentsch; Seth M. Rudman; Diana J. Rennison

Animal pigmentation plays a key role in many biological interactions, including courtship and predator avoidance. Sympatric benthic and limnetic ecotypes of threespine stickleback (Gasterosteus aculeatus) exhibit divergent pigment patterns. To test whether differential predation by cutthroat trout contributes to the differences in pigmentation seen between the ecotypes, we used a within‐generation selection experiment on F2 benthic–limnetic hybrids. After 10 months of differential selection, we compared the pigmentation of fish under trout predation to control fish not exposed to trout predation. We found that stickleback exhibited more lateral barring in ponds with trout predation. Ponds with trout were also less turbid, and a greater degree of barring was negatively correlated with the magnitude of turbidity across pond replicates. A more benthic diet, a proxy for habitat use, was also correlated with greater lateral barring and green dorsal pigmentation. These patterns suggest that differential exposure to cutthroat trout predation may explain the divergence in body pigmentation between benthic and limnetic ecotypes.


Trends in Ecology and Evolution | 2017

Contemporary Evosystem Services: A Reply to Faith et al.

Seth M. Rudman; Maayan Kreitzman; Kai M. A. Chan; Dolph Schluter

We thank Faith et al. [1] for their informative and thought-provoking reply to our recent article in TREE [2]. We agree with several of their comments regarding the path forward for the study of evosystem services and especially contemporary evosystem services, the topic of our article [2]. Evosystem services are ‘all the uses or services to humans that are produced from the evolutionary process’ [3] including benefits stemming from past, current and future evolution. In our article [2], we defined ‘contemporary evosystem services’ as ‘the maintenance or increase of an ecosystem service resulting from evolution occurring quickly enough to alter ecological processes’.


Nature Ecology and Evolution | 2018

What genomic data can reveal about eco-evolutionary dynamics

Seth M. Rudman; Matthew Barbour; Katalin Csilléry; Phillip Gienapp; Frédéric Guillaume; Nelson G. Hairston; Andrew P. Hendry; Jesse R. Lasky; Marina Rafajlović; Paul S. Schmidt; Ole Seehausen; Nina O. Therkildsen; Martin M. Turcotte; Jonathan M. Levine

Collaboration


Dive into the Seth M. Rudman's collaboration.

Top Co-Authors

Avatar

Dolph Schluter

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Gregory M. Crutsinger

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Julian Heavyside

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athena D. McKown

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Diana J. Rennison

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Kai M. A. Chan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Maayan Kreitzman

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge