Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sethu Sankaranarayanan is active.

Publication


Featured researches published by Sethu Sankaranarayanan.


JAMA Neurology | 2008

Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease.

Henrik Zetterberg; Ulf Andreasson; Oskar Hansson; Guoxin Wu; Sethu Sankaranarayanan; Malin E. Andersson; Peder Buchhave; Elisabet Londos; Robert M. Umek; Lennart Minthon; Adam J. Simon; Kaj Blennow

BACKGROUND We used a sensitive and specific beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) assay to determine the relationship between BACE1 activity in cerebrospinal fluid (CSF) and markers of APP metabolism and axonal degeneration in early and late stages of Alzheimer disease (AD). OBJECTIVE To assess CSF BACE1 activity in AD. DESIGN Case-control and longitudinal follow-up study. SETTING Specialized memory clinic. Patients Eighty-seven subjects with AD, 33 cognitively normal control subjects, and 113 subjects with mild cognitive impairment (MCI), who were followed up for 3 to 6 years. MAIN OUTCOME MEASURES Cerebrospinal fluid BACE1 activity in relation to diagnosis and CSF levels of secreted APP and amyloid beta protein (Abeta) isoforms and the axonal degeneration marker total tau. RESULTS Subjects with AD had higher CSF BACE1 activity (median, 30 pM [range, 11-96 pM]) than controls (median, 23 pM [range, 8-43 pM]) (P =.02). Subjects with MCI who progressed to AD during the follow-up period had higher baseline BACE1 activity (median, 35 pM [range, 18-71 pM]) than subjects with MCI who remained stable (median, 29 pM [range, 14-83 pM]) (P < .001) and subjects with MCI who developed other forms of dementia (median, 20 pM [range, 10-56 pM]) (P <.001). BACE1 activity correlated positively with CSF levels of secreted APP isoforms and Abeta(40) in the AD and control groups and in all MCI subgroups (P < .05) except the MCI subgroup that developed AD. Strong positive correlations were found between CSF BACE1 activity and total tau levels in all MCI subgroups (r >or= 0.57, P <or= .009). CONCLUSION Elevated BACE1 activity may contribute to the amyloidogenic process in sporadic AD and is associated with the intensity of axonal degeneration.


The Journal of Neuroscience | 2012

Hyperdynamic Microtubules, Cognitive Deficits, and Pathology Are Improved in Tau Transgenic Mice with Low Doses of the Microtubule-Stabilizing Agent BMS-241027

Donna M. Barten; Patrizia Fanara; Cathy A. Andorfer; Nina Hoque; P. Y. Anne Wong; Kristofor H. Husted; Gregory W. Cadelina; Lynn B. DeCarr; Ling Yang; Victoria M. Liu; Chancy Fessler; Joan Protassio; Timothy Riff; Holly Turner; Christopher Janus; Sethu Sankaranarayanan; Craig Polson; Jere E. Meredith; Gemma Gray; Amanda Hanna; Richard E. Olson; Soong-Hoon Kim; Gregory D. Vite; Francis Y. Lee; Charles F. Albright

Tau is a microtubule (MT)-stabilizing protein that is altered in Alzheimers disease (AD) and other tauopathies. It is hypothesized that the hyperphosphorylated, conformationally altered, and multimeric forms of tau lead to a disruption of MT stability; however, direct evidence is lacking in vivo. In this study, an in vivo stable isotope-mass spectrometric technique was used to measure the turnover, or dynamicity, of MTs in brains of living animals. We demonstrated an age-dependent increase in MT dynamics in two different tau transgenic mouse models, 3xTg and rTg4510. MT hyperdynamicity was dependent on tau expression, since a reduction of transgene expression with doxycycline reversed the MT changes. Treatment of rTg4510 mice with the epothilone, BMS-241027, also restored MT dynamics to baseline levels. In addition, MT stabilization with BMS-241027 had beneficial effects on Morris water maze deficits, tau pathology, and neurodegeneration. Interestingly, pathological and functional benefits of BMS-241027 were observed at doses that only partially reversed MT hyperdynamicity. Together, these data suggest that tau-mediated loss of MT stability may contribute to disease progression and that very low doses of BMS-241027 may be useful in the treatment of AD and other tauopathies.


Journal of Pharmacology and Experimental Therapeutics | 2009

First Demonstration of Cerebrospinal Fluid and Plasma Aβ Lowering with Oral Administration of a β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 Inhibitor in Nonhuman Primates

Sethu Sankaranarayanan; Marie A. Holahan; Dennis Colussi; Ming-Chih Crouthamel; Viswanath Devanarayan; Joan D. Ellis; Amy S. Espeseth; Adam T. Gates; Samuel Graham; Allison R. Gregro; Daria J. Hazuda; Jerome H. Hochman; Katharine M Holloway; Lixia Jin; Jason A. Kahana; Ming-Tain Lai; Janet Lineberger; Georgia B. McGaughey; Keith P. Moore; Philippe G. Nantermet; Beth Pietrak; Eric A. Price; Hemaka A. Rajapakse; Shaun R. Stauffer; Melissa A. Steinbeiser; Guy R. Seabrook; Harold G. Selnick; Xiao-Ping Shi; Matthew G. Stanton; John Swestock

β-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic Aβ42 peptides in Alzheimers disease. Although previous mouse studies have shown brain Aβ lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of Aβ in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC50 ∼ 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain Aβ levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma Aβ levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPPβ, Aβ40, Aβ42, and plasma Aβ40 levels. CSF Aβ42 lowering showed an EC50 of ∼20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF Aβ lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.


Journal of Pharmacology and Experimental Therapeutics | 2007

In Vivo β-Secretase 1 Inhibition Leads to Brain Aβ Lowering and Increased α-Secretase Processing of Amyloid Precursor Protein without Effect on Neuregulin-1

Sethu Sankaranarayanan; Eric A. Price; Guoxin Wu; Ming-Chih Crouthamel; Xiao-Ping Shi; Katherine Tugusheva; Keala X. Tyler; Jason A. Kahana; Joan D. Ellis; Lixia Jin; Thomas H. Steele; Shawn J. Stachel; Craig A. Coburn; Adam J. Simon

β-Secretase (BACE) cleavage of amyloid precursor protein (APP) is one of the first steps in the production of amyloid β peptide Aβ42, the putative neurotoxic species in Alzheimers disease. Recent studies have shown that BACE1 knockdown leads to hypomyelination, putatively caused by a decline in neuregulin (NRG)-1 processing. In this study, we have tested a potent cell-permeable BACE1 inhibitor (IC50 ∼ 30 nM) by administering it directly into the lateral ventricles of mice, expressing human wild-type (WT)-APP, to determine the consequences of BACE1 inhibition on brain APP and NRG-1 processing. BACE1 inhibition, in vivo, led to a significant dose- and time-dependent lowering of brain Aβ40 and Aβ42. BACE1 inhibition also led to a robust brain secreted (s)APPβ lowering that was accompanied by an increase in brain sAPPα levels. Although an increase in full-length NRG-1 levels was evident in 15-day-old BACE1 homozygous knockout (KO) (–/–) mice, in agreement with previous studies, this effect was also observed in 15-day-old heterozygous (+/–) mice, but it was not evident in 30-day-old and 2-year-old BACE1 KO (–/–) mice. Thus, BACE1 knockdown led to a transient decrease in NRG-1 processing in mice. Pharmacological inhibition of BACE1 in adult mice, which led to significant Aβ lowering, was without any significant effect on brain NRG-1 processing. Taken together, these results suggest that BACE1 is the major β-site cleavage enzyme for APP and that its inhibition can lower brain Aβ and redirect APP processing via the potentially nonamyloidogenic α-secretase pathway, without significantly altering NRG-1 processing.


Neuron | 2005

Regulation of Gene Expression by Lithium and Depletion of Inositol in Slices of Adult Rat Cortex

Philip E. Brandish; Ming Su; Daniel J. Holder; Paul Hodor; John Szumiloski; Robert Kleinhanz; Jaime E. Forbes; Mollie McWhorter; Sven Duenwald; Mark L Parrish; Sang Na; Yuan Liu; Robert Phillips; John J. Renger; Sethu Sankaranarayanan; Adam J. Simon; Edward M. Scolnick

Lithium inhibits inositol monophosphatase at therapeutically effective concentrations, and it has been hypothesized that depletion of brain inositol levels is an important chemical alteration for lithiums therapeutic efficacy in bipolar disorder. We have employed adult rat cortical slices as a model to investigate the gene regulatory consequences of inositol depletion effected by lithium using cytidine diphosphoryl-diacylglycerol as a functionally relevant biochemical marker to define treatment conditions. Genes coding for the neuropeptide hormone pituitary adenylate cyclase activating polypeptide (PACAP) and the enzyme that processes PACAPs precursor to the mature form, peptidylglycine alpha-amidating monooxygenase, were upregulated by inositol depletion. Previous work has shown that PACAP can increase tyrosine hydroxylase (TH) activity and dopamine release, and we found that the gene for GTP cyclohydrolase, which effectively regulates TH through synthesis of tetrahydrobiopterin, was also upregulated by inositol depletion. We propose that modulation of brain PACAP signaling might represent a new opportunity in the treatment of bipolar disorder.


PLOS ONE | 2013

Characterization of Novel CSF Tau and ptau Biomarkers for Alzheimer’s Disease

Jere E. Meredith; Sethu Sankaranarayanan; Valerie Guss; Anthony Lanzetti; Flora Berisha; Robert Neely; J. Randall Slemmon; Erik Portelius; Henrik Zetterberg; Kaj Blennow; Holly Soares; Michael K. Ahlijanian; Charles F. Albright

Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.


Journal of Alzheimer's Disease | 2011

Tau Transgenic Mice as Models for Cerebrospinal Fluid Tau Biomarkers

Donna M. Barten; Gregory W. Cadelina; Nina Hoque; Lynn B. DeCarr; Valerie Guss; Ling Yang; Sethu Sankaranarayanan; Paul D. Wes; Marianne E. Flynn; Jere E. Meredith; Michael K. Ahlijanian; Charles F. Albright

Levels of tau in cerebrospinal fluid (CSF) are elevated in Alzheimers disease (AD) patients. It is believed this elevation is related to the tau pathology and neurodegeneration observed in AD, but not all tauopathies have increased CSF tau. There has been little pre-clinical work to investigate mechanisms of increased CSF tau due to the difficulty in collecting CSF samples from mice, the most commonly used pre-clinical models. We developed methods to collect CSF from mice without contamination from tau in brain tissue, which is approximately 50,000 fold more abundant in brain than CSF. Using these methods, we measured CSF tau from 3xTg, Tg4510, and Tau Alone transgenic mice. All three lines of mice showed age-dependent increases in CSF tau. They varied in phenotype from undetectable to severe tau pathology and neurodegeneration, suggesting that degenerating neurons are unlikely to be the only source of pathologic CSF tau. Overall, CSF tau levels mirrored expression levels and changes of tau in the brain, but they did not always correlate exactly. CSF tau was often more sensitive to changes in brain transgene expression and pathology. In addition, we also developed ELISA assays specific to different regions of the tau protein. We used these assays to provide evidence that CSF tau exists as fragments, with little intact C-terminus and partial loss of the N-terminus. Taken together, these assays and mouse models may be used to facilitate a deeper understanding of CSF tau in neurodegenerative disease.


Journal of Medicinal Chemistry | 2008

Discovery and X-ray Crystallographic Analysis of a Spiropiperidine Iminohydantoin Inhibitor of β-Secretase‡

James C. Barrow; Shaun R. Stauffer; Kenneth E. Rittle; Phung L. Ngo; Zhi-Qiang Yang; Harold G. Selnick; Samuel L. Graham; Sanjeev Munshi; Georgia B. McGaughey; M. Katharine Holloway; Adam J. Simon; Eric A. Price; Sethu Sankaranarayanan; Dennis Colussi; Katherine Tugusheva; Ming Tain Lai; Amy S. Espeseth; Min Xu; Qian Huang; Abigail Wolfe; Beth Pietrak; Paul Zuck; Dorothy Levorse; Daria J. Hazuda; Joseph P. Vacca

A high-throughput screen at 100 microM inhibitor concentration for the BACE-1 enzyme revealed a novel spiropiperidine iminohydantoin aspartyl protease inhibitor template. An X-ray cocrystal structure with BACE-1 revealed a novel mode of binding whereby the inhibitor interacts with the catalytic aspartates via bridging water molecules. Using the crystal structure as a guide, potent compounds with good brain penetration were designed.


PLOS ONE | 2015

Passive Immunization with Phospho-Tau Antibodies Reduces Tau Pathology and Functional Deficits in Two Distinct Mouse Tauopathy Models

Sethu Sankaranarayanan; Donna M. Barten; Laurel Vana; Nino Devidze; Ling Yang; Gregory W. Cadelina; Nina Hoque; Lynn B. DeCarr; Stefanie Keenan; Alan Lin; Yang Cao; Bradley Snyder; Bin Zhang; Magdalena Nitla; Gregg Hirschfeld; Nestor X. Barrezueta; Craig Polson; Paul D. Wes; Vangipuram S. Rangan; Angela Cacace; Charles F. Albright; Jere E. Meredith; John Q. Trojanowski; Virginia M.-Y. Lee; Kurt R. Brunden; Michael K. Ahlijanian

In Alzheimer’s disease (AD), an extensive accumulation of extracellular amyloid plaques and intraneuronal tau tangles, along with neuronal loss, is evident in distinct brain regions. Staging of tau pathology by postmortem analysis of AD subjects suggests a sequence of initiation and subsequent spread of neurofibrillary tau tangles along defined brain anatomical pathways. Further, the severity of cognitive deficits correlates with the degree and extent of tau pathology. In this study, we demonstrate that phospho-tau (p-tau) antibodies, PHF6 and PHF13, can prevent the induction of tau pathology in primary neuron cultures. The impact of passive immunotherapy on the formation and spread of tau pathology, as well as functional deficits, was subsequently evaluated with these antibodies in two distinct transgenic mouse tauopathy models. The rTg4510 transgenic mouse is characterized by inducible over-expression of P301L mutant tau, and exhibits robust age-dependent brain tau pathology. Systemic treatment with PHF6 and PHF13 from 3 to 6 months of age led to a significant decline in brain and CSF p-tau levels. In a second model, injection of preformed tau fibrils (PFFs) comprised of recombinant tau protein encompassing the microtubule-repeat domains into the cortex and hippocampus of young P301S mutant tau over-expressing mice (PS19) led to robust tau pathology on the ipsilateral side with evidence of spread to distant sites, including the contralateral hippocampus and bilateral entorhinal cortex 4 weeks post-injection. Systemic treatment with PHF13 led to a significant decline in the spread of tau pathology in this model. The reduction in tau species after p-tau antibody treatment was associated with an improvement in novel-object recognition memory test in both models. These studies provide evidence supporting the use of tau immunotherapy as a potential treatment option for AD and other tauopathies.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacodynamics of Selective Inhibition of γ -Secretase by Avagacestat

Charles F. Albright; Randy C. Dockens; Jere E. Meredith; Richard E. Olson; Randy Slemmon; Kimberley A. Lentz; Jun-Sheng Wang; Rex Denton; Gary Pilcher; Paul Rhyne; Joseph Raybon; Donna M. Barten; Catherine R. Burton; Jeremy H. Toyn; Sethu Sankaranarayanan; Craig Polson; Valerie Guss; Randy White; Frank Simutis; Thomas P. Sanderson; Kevin W. Gillman; John E. Starrett; Joanne J. Bronson; Oleksandr Sverdlov; Shu-Pang Huang; Lorna Castaneda; Howard Feldman; Vlad Coric; Robert Zaczek; John E. Macor

A hallmark of Alzheimer’s disease (AD) pathology is the accumulation of brain amyloid β-peptide (Aβ), generated by γ-secretase-mediated cleavage of the amyloid precursor protein (APP). Therefore, γ-secretase inhibitors (GSIs) may lower brain Aβ and offer a potential new approach to treat AD. As γ-secretase also cleaves Notch proteins, GSIs can have undesirable effects due to interference with Notch signaling. Avagacestat (BMS-708163) is a GSI developed for selective inhibition of APP over Notch cleavage. Avagacestat inhibition of APP and Notch cleavage was evaluated in cell culture by measuring levels of Aβ and human Notch proteins. In rats, dogs, and humans, selectivity was evaluated by measuring plasma blood concentrations in relation to effects on cerebrospinal fluid (CSF) Aβ levels and Notch-related toxicities. Measurements of Notch-related toxicity included goblet cell metaplasia in the gut, marginal-zone depletion in the spleen, reductions in B cells, and changes in expression of the Notch-regulated hairy and enhancer of split homolog-1 from blood cells. In rats and dogs, acute administration of avagacestat robustly reduced CSF Aβ40 and Aβ42 levels similarly. Chronic administration in rats and dogs, and 28-day, single- and multiple-ascending–dose administration in healthy human subjects caused similar exposure-dependent reductions in CSF Aβ40. Consistent with the 137-fold selectivity measured in cell culture, we identified doses of avagacestat that reduce CSF Aβ levels without causing Notch-related toxicities. Our results demonstrate the selectivity of avagacestat for APP over Notch cleavage, supporting further evaluation of avagacestat for AD therapy.

Collaboration


Dive into the Sethu Sankaranarayanan's collaboration.

Top Co-Authors

Avatar

Adam J. Simon

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Eric A. Price

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Pietrak

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Lixia Jin

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge