Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Settara C. Chandrasekharappa is active.

Publication


Featured researches published by Settara C. Chandrasekharappa.


Nature Genetics | 1997

Mutations in the human Jagged1 gene are responsible for Alagille syndrome

Takaya Oda; Abdel G. Elkahloun; Brian L. Pike; Kazuki Okajima; Ian D. Krantz; Anna Genin; David A. Piccoli; Paul S. Meltzer; Nancy B. Spinner; Francis S. Collins; Settara C. Chandrasekharappa

Alagille syndrome (AGS) is an autosomal-dominant disorder characterized by intrahepatic cholestasis and abnormalities of heart, eye and vertebrae, as well as a characteristic facial appearance. Identification of rare AGS patients with cytogenetic deletions has allowed mapping of the gene to 20p12. We have generated a cloned contig of the critical region and used fluorescent in situ hybridization on cells from patients with submicroscopic deletions to narrow the candidate region to only 250 kb. Within this region we identified JAG1, the human homologue of rat Jagged1, which encodes a ligand for the Notch receptor. Cell-cell Jagged/Notch interactions are known to be critical for determination of cell fates in early development, making this an attractive candidate gene for a developmental disorder in humans. Determining the complete exon–intron structure of JAG1 allowed detailed mutational analysis of DMA samples from non-deletion AGS patients, revealing three frame-shift mutations, two splice donor mutations and one mutation abolishing RNA expression from the altered allele. We conclude that AGS is caused by haploinsufficiency of JAG1.


Developmental Cell | 2003

Mind Bomb Is a Ubiquitin Ligase that Is Essential for Efficient Activation of Notch Signaling by Delta

Motoyuki Itoh; Cheol-Hee Kim; Gregory R. Palardy; Takaya Oda; Yun-Jin Jiang; Donovan Maust; Sang-Yeob Yeo; Kevin L. Lorick; Gavin J. Wright; Linda Ariza-McNaughton; Allan M. Weissman; Julian Lewis; Settara C. Chandrasekharappa; Ajay B. Chitnis

Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.


Cell | 1999

Menin Interacts with the AP1 Transcription Factor JunD and Represses JunD-Activated Transcription

Sunita K. Agarwal; Siradanahalli C. Guru; Christina Heppner; Michael R. Erdos; Regina M. Collins; Sylvia Y. Park; Suraj Saggar; Settara C. Chandrasekharappa; Francis S. Collins; Allen M. Spiegel; Stephen J. Marx; A. Lee Burns

MEN1 is a tumor suppressor gene that encodes a 610 amino acid nuclear protein (menin) of previously unknown function. Using a yeast two-hybrid screen with menin as the bait, we have identified the transcription factor JunD as a direct menin-interacting partner. Menin did not interact directly with other Jun and Fos family members. The menin-JunD interaction was confirmed in vitro and in vivo. Menin repressed transcriptional activation mediated by JunD fused to the Gal4 DNA-binding domain from a Gal4 responsive reporter, or by JunD from an AP1-responsive reporter. Several naturally occurring and clustered MEN1 missense mutations disrupted menin interaction with JunD. These observations suggest that menins tumor suppressor function involves direct binding to JunD and inhibition of JunD activated transcription.


Nature | 2000

Repressor activity of Headless/Tcf3 is essential for vertebrate head formation.

Cheol-Hee Kim; Takaya Oda; Motoyuki Itoh; Di Jiang; Kristin B. Artinger; Settara C. Chandrasekharappa; Wolfgang Driever; Ajay B. Chitnis

The vertebrate organizer can induce a complete body axis when transplanted to the ventral side of a host embryo by virtue of its distinct head and trunk inducing properties. Wingless/Wnt antagonists secreted by the organizer have been identified as head inducers. Their ectopic expression can promote head formation, whereas ectopic activation of Wnt signalling during early gastrulation blocks head formation. These observations suggest that the ability of head inducers to inhibit Wnt signalling during formation of anterior structures is what distinguishes them from trunk inducers that permit the operation of posteriorizing Wnt signals. Here we describe the zebrafish headless (hdl) mutant and show that its severe head defects are due to a mutation in T-cell factor-3 (Tcf3), a member of the Tcf/Lef family. Loss of Tcf3 function in the hdl mutant reveals that hdl represses Wnt target genes. We provide genetic evidence that a component of the Wnt signalling pathway is essential in vertebrate head formation and patterning.


Oncogene | 2001

The tumor suppressor protein menin interacts with NF-κB proteins and inhibits NF-κB-mediated transactivation

Christina Heppner; Karl Y. Bilimoria; Sunita K. Agarwal; MaryBeth Kester; Leslie J. Whitty; Siradanahalli C. Guru; Settara C. Chandrasekharappa; Francis S. Collins; Allen M. Spiegel; Stephen J. Marx; A. Lee Burns

Multiple endocrine neoplasia type 1 is an autosomal dominant tumor syndrome. Manifestations include neoplasms of the parathyroid glands, enteropancreatic neuroendocrine cells, and the anterior pituitary gland. The MEN1 tumor suppressor gene encodes menin, a 610 amino acid nuclear protein without sequence homology to other proteins. To elucidate menin function, we used immunoprecipitation to identify interacting proteins. The NF-κB proteins p50, p52 and p65 were found to interact specifically and directly with menin in vitro and in vivo. The region of NF-κB proteins sufficient for binding to menin is the N-terminus. Furthermore, amino acids 305–381 of menin are essential for this binding. Menin represses p65-mediated transcriptional activation on NF-κB sites in a dose-dependent and specific manner. Also, PMA (phorbol 12-myristate 13-acetate)-stimulated NF-κB activation is suppressed by menin. These observations suggest that menins ability to interact with NF-κB proteins and its modulation of NF-κB transactivation contribute to menins tumor suppressor function.


Molecular and Cellular Biology | 2003

Of mice and MEN1: Insulinomas in a conditional mouse knockout.

Judy S. Crabtree; Peter C. Scacheri; Jerrold M. Ward; Sara McNally; Gary P. Swain; Cristina Montagna; Jeffrey H. Hager; Douglas Hanahan; Helena Edlund; Mark A. Magnuson; Lisa Garrett-Beal; A. Lee Burns; Thomas Ried; Settara C. Chandrasekharappa; Stephen J. Marx; Allen M. Spiegel; Francis S. Collins

ABSTRACT Patients with multiple endocrine neoplasia type 1 (MEN1) develop multiple endocrine tumors, primarily affecting the parathyroid, pituitary, and endocrine pancreas, due to the inactivation of the MEN1 gene. A conditional mouse model was developed to evaluate the loss of the mouse homolog, Men1, in the pancreatic beta cell. Men1 in these mice contains exons 3 to 8 flanked by loxP sites, such that, when the mice are crossed to transgenic mice expressing cre from the rat insulin promoter (RIP-cre), exons 3 to 8 are deleted in beta cells. By 60 weeks of age, >80% of mice homozygous for the floxed Men1 gene and expressing RIP-cre develop multiple pancreatic islet adenomas. The formation of adenomas results in elevated serum insulin levels and decreased blood glucose levels. The delay in tumor appearance, even with early loss of both copies of Men1, implies that additional somatic events are required for adenoma formation in beta cells. Comparative genomic hybridization of beta cell tumor DNA from these mice reveals duplication of chromosome 11, potentially revealing regions of interest with respect to tumorigenesis.


Cell Stem Cell | 2012

Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression.

Linzhao Cheng; Nancy F. Hansen; Ling Zhao; Yutao Du; Chunlin Zou; Frank X. Donovan; Bin Kuan Chou; Guangyu Zhou; Shijie Li; Sarah N. Dowey; Zhaohui Ye; Settara C. Chandrasekharappa; Huanming Yang; James C. Mullikin; P. Paul Liu

The utility of induced pluripotent stem cells (iPSCs) as models to study diseases and as sources for cell therapy depends on the integrity of their genomes. Despite recent publications of DNA sequence variations in the iPSCs, the true scope of such changes for the entire genome is not clear. Here we report the whole-genome sequencing of three human iPSC lines derived from two cell types of an adult donor by episomal vectors. The vector sequence was undetectable in the deeply sequenced iPSC lines. We identified 1,058-1,808 heterozygous single-nucleotide variants (SNVs), but no copy-number variants, in each iPSC line. Six to twelve of these SNVs were within coding regions in each iPSC line, but ~50% of them are synonymous changes and the remaining are not selectively enriched for known genes associated with cancers. Our data thus suggest that episome-mediated reprogramming is not inherently mutagenic during integration-free iPSC induction.


Development | 2004

Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy

Kristin Lorent; Sang-Yeob Yeo; Takaya Oda; Settara C. Chandrasekharappa; Ajay B. Chitnis; Randolph P. Matthews; Michael Pack

The Alagille Syndrome (AGS) is a heritable disorder affecting the liver and other organs. Causative dominant mutations in human Jagged 1 have been identified in most AGS patients. Related organ defects occur in mice that carry jagged 1 and notch 2 mutations. Multiple jagged and notch genes are expressed in the developing zebrafish liver. Compound jagged and notch gene knockdowns alter zebrafish biliary, kidney, pancreatic, cardiac and craniofacial development in a manner compatible with an AGS phenocopy. These data confirm an evolutionarily conserved role for Notch signaling in vertebrate liver development, and support the zebrafish as a model system for diseases of the human biliary system.


Annals of the New York Academy of Sciences | 2004

Molecular Pathology of the MEN1 Gene

Sunita K. Agarwal; A. Lee Burns; Karen E. Sukhodolets; Patricia A. Kennedy; Victor H. Obungu; Alison Burgess Hickman; Michael E. Mullendore; Ira Whitten; Monica C. Skarulis; William F. Simonds; Carmen M. Mateo; Judy S. Crabtree; Peter C. Scacheri; Youngmi Ji; Elizabeth A. Novotny; Lisa Garrett-Beal; Jerrold M. Ward; Steven K. Libutti; H. Richard Alexander; Aniello Cerrato; Michael Parisi; Sonia Santa Anna-A; Brian Oliver; Settara C. Chandrasekharappa; Francis S. Collins; Allen M. Spiegel; Stephen J. Marx

Abstract: Multiple endocrine neoplasia type 1 (MEN1), among all syndromes, causes tumors in the highest number of tissue types. Most of the tumors are hormone producing (e.g., parathyroid, enteropancreatic endocrine, anterior pituitary) but some are not (e.g., angiofibroma). MEN1 tumors are multiple for organ type, for regions of a discontinuous organ, and for subregions of a continuous organ. Cancer contributes to late mortality; there is no effective prevention or cure for MEN1 cancers. Morbidities are more frequent from benign than malignant tumor, and both are indicators for screening. Onset age is usually earlier in a tumor type of MEN1 than of nonhereditary cases. Broad trends contrast with those in nonneoplastic excess of hormones (e.g., persistent hyperinsulinemic hypoglycemia of infancy). Most germline or somatic mutations in the MEN1 gene predict truncation or absence of encoded menin. Similarly, 11q13 loss of heterozygosity in tumors predicts inactivation of the other MEN1 copy. MEN1 somatic mutation is prevalent in nonhereditary, MEN1‐like tumor types. Compiled germline and somatic mutations show almost no genotype/phenotype relation. Normal menin is 67 kDa, widespread, and mainly nuclear. It may partner with junD, NF‐kB, PEM, SMAD3, RPA2, FANCD2, NM23β, nonmuscle myosin heavy chain II‐A, GFAP, and/or vimentin. These partners have not clarified menins pathways in normal or tumor tissues. Animal models have opened approaches to menin pathways. Local overexpression of menin in Drosophila reveals its interaction with the jun‐kinase pathway. The Men1+/− mouse has robust MEN1; its most important difference from human MEN1 is marked hyperplasia of pancreatic islets, a tumor precursor stage.


Nature Genetics | 2016

Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease

Qing Zhou; Hongying Wang; Daniella M. Schwartz; Monique Stoffels; Yong Hwan Park; Yuan Zhang; Dan Yang; Erkan Demirkaya; Masaki Takeuchi; Wanxia Li Tsai; Jonathan J. Lyons; Xiaomin Yu; Claudia Ouyang; Celeste Chen; David T. Chin; Kristien Zaal; Settara C. Chandrasekharappa; Eric P. Hanson; Zhen Yu; James C. Mullikin; Sarfaraz Hasni; Ingrid E Wertz; Amanda K. Ombrello; Deborah L. Stone; Patrycja Hoffmann; Anne Jones; Beverly Barham; Helen L. Leavis; Annet van Royen-Kerkof; Cailin Sibley

Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçets disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-κB signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB–mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB–dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.

Collaboration


Dive into the Settara C. Chandrasekharappa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen J. Marx

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Allen M. Spiegel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sunita K. Agarwal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Siradanahalli C. Guru

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

A. Lee Burns

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pachiappan Manickam

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larisa V. Debelenko

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Zhengping Zhuang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge