Settimio Pacelli
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Settimio Pacelli.
Materials | 2014
James B. Rose; Settimio Pacelli; Alicia J. El Haj; Harminder S. Dua; Andrew Hopkinson; Lisa J. White; Felicity R.A.J. Rose
Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.
Journal of Materials Chemistry B | 2016
Settimio Pacelli; Vijayan Manoharan; Anna Desalvo; Nikita Lomis; Kartikeya Singh Jodha; Satya Prakash; Arghya Paul
Host body response to a foreign medical device plays a critical role in defining its fate post implantation. It is thus important to control host-material interactions by designing innovative implant surfaces. In the recent years, biochemical and topographical features have been explored as main target to produce this new type of bioinert or bioresponsive implants. The review discusses specific biofunctional materials and strategies to achieve a precise control over implant surface properties and presents possible solutions to develop next generation of implants, particularly in the fields of bone and cardiovascular therapy.
International Journal of Biological Macromolecules | 2015
Settimio Pacelli; Patrizia Paolicelli; Inge Dreesen; Shuichiro Kobayashi; Annabella Vitalone; Maria Antonietta Casadei
In this work, a natural polysaccharide gellan gum (GG) has been modified with methacrylic groups (GG-MA) and combined with polyethylene glycol dimethacrylate (PEG-DMA) in order to create novel injectable hydrogels that can be easily delivered through a needle and photocross-linked in the injection site. A novel synthetic procedure for methacrylation of GG has been proposed to better control its derivatization. Different degrees of functionalization have been achieved and their effects on the solubility and mechanical properties of GG-MA were investigated. A good balance in terms of hydrophilicity and elasticity of the corresponding hydrogels was identified, although not suitable enough as injectable material for the treatment of damaged soft tissues. For this reason, several concentrations and different molecular weights of PEG-DMA were investigated to modulate the composition of GG-MA hydrogels and overcome their extreme fragility. Swelling abilities of the hydrogels in different media were studied as a key parameter able to affect the release profile of loaded therapeutic agents. Model molecules having different spherical hindrance (sulindac and vitamin B12) were then chosen to study how the hydrogels were able to modulate their diffusion profiles over time. Finally, the hydrogels safety was evaluated trough an MTT cytotoxicity test on human fibroblasts.
Carbohydrate Polymers | 2015
Settimio Pacelli; Patrizia Paolicelli; Maria Antonietta Casadei
A new derivative of dextran grafted with polyethylene glycol methacrylate through a carbonate bond (DEX-PEG-MA) has been synthesized and characterized. The photo-crosslinking reaction of DEX-PEG-MA allowed the obtainment of biodegradable networks tested for their mechanical and release properties. The new hydrogels were compared with those made of dextran methacrylate (DEX-MA), often employed as drug delivery systems of small molecules. The inclusion of PEG as a spacer created additional interactions among the polymeric chains improving the extreme fragility and lack of hardness typical of gels made of DEX-MA. Moreover, the different behavior in terms of swelling and degradability of the networks was able to affect the release of a model macromolecule over time, making DEX-PEG-MA matrices suitable candidates for the delivery of high molecular weight peptides. Interestingly, the combination of the two dextran derivatives showed intermediate ability to modulate the release of high molecular weight macromolecules.
Acta Biomaterialia | 2017
Settimio Pacelli; Francisca Acosta; Aparna R. Chakravarti; Saheli Samanta; Jonathan Whitlow; Saman Modaresi; Rafeeq P.H. Ahmed; Johnson Rajasingh; Arghya Paul
Nanodiamonds (NDs) represent an emerging class of carbon nanomaterials that possess favorable physical and chemical properties to be used as multifunctional carriers for a variety of bioactive molecules. Here we report the synthesis and characterization of a new injectable ND-based nanocomposite hydrogel which facilitates a controlled release of therapeutic molecules for regenerative applications. In particular, we have formulated a thermosensitive hydrogel using gelatin, chitosan and NDs that provides a sustained release of exogenous human vascular endothelial growth factor (VEGF) for wound healing applications. Addition of NDs improved the mechanical properties of the injectable hydrogels without affecting its thermosensitive gelation properties. Biocompatibility of the generated hydrogel was verified by in vitro assessment of apoptotic gene expressions and anti-inflammatory interleukin productions. NDs were complexed with VEGF and the inclusion of this complex in the hydrogel network enabled the sustained release of the angiogenic growth factor. These results suggest for the first time that NDs can be used to formulate a biocompatible, thermosensitive and multifunctional hydrogel platform that can function both as a filling agent to modulate hydrogel properties, as well as a delivery platform for the controlled release of bioactive molecules and growth factors. STATEMENT OF SIGNIFICANCE One of the major drawbacks associated with the use of conventional hydrogels as carriers of growth factors is their inability to control the release kinetics of the loaded molecules. In fact, in most cases, a burst release is inevitable leading to diminished therapeutic effects and unsuccessful therapies. As a potential solution to this issue, we hereby propose a strategy of incorporating ND complexes within an injectable hydrogel matrix. The functional groups on the surface of the NDs can establish interactions with the model growth factor VEGF and promote a prolonged release from the polymer network, therefore, providing a longer therapeutic effect. Our strategy demonstrates the efficacy of using NDs as an essential component for the design of a novel injectable nanocomposite system with improved release capabilities.
Carbohydrate Polymers | 2013
Federica Corrente; Hend M. Abu Amara; Settimio Pacelli; Patrizia Paolicelli; Maria Antonietta Casadei
In this paper mixtures of two biocompatible polymers, dextran methacrylate (DEX-MA) with different molecular weights and scleroglucan (Scl), in its native form and as carboxymethyl derivative (Scl-CM), were tested as injectable and in situ cross-linkable systems. Rheological and texture analyses were carried out to better investigate the behavior of this kind of matrices. The combination of these polymers is able to assure adequate mechanical properties, suitable for biomedical applications. In addition swelling studies and in vitro release studies of three different biomolecules were also carried out.
Journal of Controlled Release | 2017
Jonathan Whitlow; Settimio Pacelli; Arghya Paul
Abstract With recent advances in the field of nanomedicine, many new strategies have emerged for diagnosing and treating diseases. At the forefront of this multidisciplinary research, carbon nanomaterials have demonstrated unprecedented potential for a variety of regenerative medicine applications including novel drug delivery platforms that facilitate the localized and sustained release of therapeutics. Nanodiamonds (NDs) are a unique class of carbon nanoparticles that are gaining increasing attention for their biocompatibility, highly functional surfaces, optical properties, and robust physical properties. Their remarkable features have established NDs as an invaluable regenerative medicine platform, with a broad range of clinically relevant applications ranging from targeted delivery systems for insoluble drugs, bioactive substrates for stem cells, and fluorescent probes for long‐term tracking of cells and biomolecules in vitro and in vivo. This review introduces the synthesis techniques and the various routes of surface functionalization that allow for precise control over the properties of NDs. It also provides an in‐depth overview of the current progress made toward the use of NDs in the fields of drug delivery, tissue engineering, and bioimaging. Their future outlook in regenerative medicine including the current clinical significance of NDs, as well as the challenges that must be overcome to successfully translate the reviewed technologies from research platforms to clinical therapies will also be discussed. Graphical abstract Figure. No Caption available.
Advanced Drug Delivery Reviews | 2017
Settimio Pacelli; Sayantani Basu; Jonathan Whitlow; Aparna R. Chakravarti; Francisca Acosta; Arushi Varshney; Saman Modaresi; Cory Berkland; Arghya Paul
ABSTRACT A leading strategy in tissue engineering is the design of biomimetic scaffolds that stimulate the bodys repair mechanisms through the recruitment of endogenous stem cells to sites of injury. Approaches that employ the use of chemoattractant gradients to guide tissue regeneration without external cell sources are favored over traditional cell‐based therapies that have limited potential for clinical translation. Following this concept, bioactive scaffolds can be engineered to provide a temporally and spatially controlled release of biological cues, with the possibility to mimic the complex signaling patterns of endogenous tissue regeneration. Another effective way to regulate stem cell activity is to leverage the inherent chemotactic properties of extracellular matrix (ECM)‐based materials to build versatile cell‐instructive platforms. This review introduces the concept of endogenous stem cell recruitment, and provides a comprehensive overview of the strategies available to achieve effective cardiovascular and bone tissue regeneration. Graphical abstract Figure. No Caption available.
Journal of Polymer Research | 2014
Settimio Pacelli; Patrizia Paolicelli; Federico Pepi; Stefania Garzoli; Alessandro Polini; Beatrice Tita; Annabella Vitalone; Maria Antonietta Casadei
Combining different polymeric systems can be a useful tool to create new networks with different characteristics with respect to the starting materials. In this work, hydrogels composed of gellan gum (GG) and polyethylene glycol dimethacrylate (PEG-DMA) were realized to overcome the fragility problems of physical gels of GG, which limit their biological application as scaffold for tissue engineering. The two polymeric systems were combined using different synthetic approaches, with particular attention to the double network strategy (DN). The influence of several parameters on the mechanical properties, such as the time of diffusion and the molecular weight of PEG-DMA, were evaluated by rheological studies and compressive texture analyses. The hydrogels were also investigated for their ability to swell and release model molecules with different sterical hindrances, such as vitamin B12 and myoglobin. Finally, to estimate the biological safety of the hydrogels, their effect on mitochondrial function of human fibroblasts was investigated.
Scientific Reports | 2017
Settimio Pacelli; Ryan Maloney; Aparna R. Chakravarti; Jonathan Whitlow; Sayantani Basu; Saman Modaresi; Stevin H. Gehrke; Arghya Paul
Nanodiamonds (NDs) have attracted considerable attention as drug delivery nanocarriers due to their low cytotoxicity and facile surface functionalization. Given these features, NDs have been recently investigated for the fabrication of nanocomposite hydrogels for tissue engineering. Here we report the synthesis of a hydrogel using photocrosslinkable gelatin methacrylamide (GelMA) and NDs as a three-dimensional scaffold for drug delivery and stem cell-guided bone regeneration. We investigated the effect of different concentration of NDs on the physical and mechanical properties of the GelMA hydrogel network. The inclusion of NDs increased the network stiffness, which in turn augmented the traction forces generated by human adipose stem cells (hASCs). We also tested the ability of NDs to adsorb and modulate the release of a model drug dexamethasone (Dex) to promote the osteogenic differentiation of hASCs. The ND-Dex complexes modulated gene expression, cell area, and focal adhesion number in hASCs. Moreover, the integration of the ND-Dex complex within GelMA hydrogels allowed a higher retention of Dex over time, resulting in significantly increased alkaline phosphatase activity and calcium deposition of encapsulated hASCs. These results suggest that conventional GelMA hydrogels can be coupled with conjugated NDs to develop a novel platform for bone tissue engineering.