Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung Chae Yoon is active.

Publication


Featured researches published by Seung Chae Yoon.


Materials Science Forum | 2006

Equal Channel Angular Pressing of Metallic Powders for Nanostructured Materials

Seung Chae Yoon; Hyoung Seop Kim

In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders with least grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. In the ECAP process of not only solid but also powder metals, knowledge of the density as well as internal stress, strain and strain rate distribution is important for understanding the process. We investigated the consolidation, plastic deformation and microstructure evolution behavior of the metallic powders during ECAP using experimental and theoretical methods. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method in conjunction with a pressure dependent material yield model. It was found that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process of gas atomized Al-Si powders. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.


Materials Science Forum | 2007

Carbon Nanotube Reinforced Metal Matrix Nanocomposites Via Equal Channel Angular Pressing

Pham Quang; Young Gi Jeong; Seung Chae Yoon; Sun Ig Hong; Soon Hyung Hong; Hyoung Seop Kim

Carbon nanotubes (CNTs) have been the subject of intensive study for applications in the fields of nanotechnologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (≈ several nm) as well as their high Young’s modulus (≈ 1 TPa), tensile strength (≈ 200 GPa) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of CNT/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated CNT/Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.


Materials Science Forum | 2007

Densification and Conolidation of Powders by Equal Channel Angular Pressing

Seung Chae Yoon; Sun Ig Hong; Soon Hyung Hong; Hyoung Seop Kim

In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders with least grain growth, which is considered as a bottle neck of the bottom-up method that uses the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. In the ECAP process of not only solid but also powder metals, it is important to get a good understanding of the density as well as internal stress, strain and strain rate distribution. We investigated the consolidation, plastic deformation and microstructure evolution behavior of the metallic powders during ECAP using an experimental method. It was found that high mechanical strength could be achieved effectively due to the well bonded powder contact surface during ECAP process of gas atomized Al-Si powders. The experimental results show that SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.


Key Engineering Materials | 2007

Achieving Both Powder Consolidation and Grain Refinement for Bulk Nanostructured Materials by Equal-Channel Angular Pressing

Seung Chae Yoon; Do Minh Nghiep; Sun Ig Hong; Zenji Horita; Hyoung Seop Kim

Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders. ECAP (Equal-Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain and strain rate distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method in conjunction with a pressure dependent material yield model. Effects of processing parameters on densification and density distributions were investigated.


Key Engineering Materials | 2007

Multi-Scale Modelling Scheme for Carbon Nanotube Reinforced Metal Matrix Composites

Quang Pham; Seung Chae Yoon; Chun Hee Bok; Hyoung Seop Kim

Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nanotechnologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their high Young’s modulus (≈ 1 TPa), tensile strength (≈ 200 GPa) and high elongation (10-30%) as well as high chemical stability, CNTs are considered to be attractive reinforcement materials for light weight and high strength metal matrix composites. In this paper, we described a scheme for multi-scale modeling for the elastic and plastic properties of CNT/metal nanocomposites using the numerical analyses of the three-dimensional finite element method based on the continuum mechanics of a unit cell. In particular, the quantitative effects of the distribution and the array of the CNT reinforcement (viz. cross-over, vertical and horizontal distributions) on the elasticity and plasticity of the nanocomposites were investigated and the anisotropic characteristics of elasticity and plasticity of the nanocomposites were linked with the extremely high aspect ratio of CNTs.


Transactions of materials processing | 2006

Preform Effect on the Plastic Deformation Behavior of Workpieces in Equal Channel Angular Pressing

Seung Chae Yoon; Min Hong Seo; Hyoungseop Kim

Preform design is an effective means of achieving the homogeneous deformation of workpiece materials and decreased load in metal forming. However, this approach has not been applied to equal channel angula. pressing (ECAP). In this paper, plastic deformation behavior of workpieces having four different preform shapes during ECAP was investigated using finite element analyses. The results indicated that a preform design of the workpiece head has a beneficial effect on homogeneous deformation, reducing the maximum pressing load at the initial stage and eliminating folding defects at strain concentration points.


Materials Science Forum | 2006

Simulation of Equal-Channel Angular Extrusion Pressing

Igor V. Alexandrov; I.N. Budilov; György Krállics; Hyoung Seop Kim; Seung Chae Yoon; A.A. Smolyakov; Alexander Korshunov; V.P. Solovyev

Equal-channel angular (ECA) pressing is the main technique of the severe plastic deformation (SPD) method, applied for fabrication of bulk nanostructured metal materials. At the same time the practical realization of this technique is a rather challenging task. This is connected with the fact that the material during the ECA pressing is subjected to large strains under high imposed pressure at relatively low temperatures. Simulation with the help of the finite element method (FEM) or the variation-difference (VDM) method is widely applied to analyze the process of ECA pressing. A variety of as commercial as well as in-house developed programs are used by researches, when conducting this analysis. As a result the correlation between the modeling results, obtained at different laboratories as well as their adequacy, i.e. possibilities of their application for the analysis of the experimental data become topical issues. In order to find answers to the questions put by there has been performed computer simulation of 1st pass of ECA pressing by an example of pure copper at 4 different laboratories, engaged in SPD problems. Meanwhile, the investigators used different software packages, however, initial simulation conditions were set equal. This refers in particular to geometry sizes and the form of the die-set possessing square transverse section of the channels, as well as to the inner and outer curvature radii of the channels in the point where they intersect, and to the form and dimensions of the billet, strain rate, strain curve, isotropic model of the material. The modeling temperature was ambient. The die-set and the punch were assigned as absolutely solid non-deformable bodies. Taking into account the symmetry of the solving task, the modeling was conducted for a half of the billet, cut along the vertical plane, coming through its geometrical center. The friction coefficient was assigned equal to zero, in order to avoid influence of friction on the character of the material flow as well as not to complicate the problem at the given stage of comparison. Other modeling parameters were chosen by each researcher on his own, basing on his experience and conventional approaches to modeling. Comparison of the obtained modeling results was made by means of matching of the calculated values of the level of the accumulated strain along the bulk of the billet, pressing efforts, and the geometrical form of the billet after ECA pressing. Modeling results were compared with the results of the experimental researches.


Transactions of materials processing | 2007

Effects of the Processing Temperature and the Number of Passes of Equal Channel Angular Pressing on the Microstructure and Hardness of IF Steel

Seung Chae Yoon; W.S. Ryu; S.C. Baik; Hyoungseop Kim

The microstructure and the hardness of interstitial free steel processed by equal channel angular pressing (ECAP) was investigated experimentally. ECAP processing of route A and route C was compared with regard to grain refinement by transmission electron micrographs. Micro hardness evolution was correlated with the gram structure produced by ECAP. Especially, the effects of the ECAP processing temperature and the number of processing passes were discussed in terms of grain refinement.


Journal of Korean Powder Metallurgy Institute | 2009

Finite Element Analysis of Densification of Mg Powders during Equal Channel Angular Pressing: Effect of Sheath

Seung Chae Yoon; Taek-Soo Kim; Hyoungseop Kim

Magnesium and its alloys are attractive as light weight structural/functional materials for high performance application in automobile and electronics industries due to their superior physical properties. In order to obtain high quality products manufactured by the magnesium powders, it is important to control and understand the densification behavior of the powders. The effect of the sheath surrounding the magnesium powders on the plastic deformation and densification behavior during equal channel angular pressing was investigated in the study by experimental and the finite element methods. A modified version of Lee-Kim`s plastic yield criterion, notably known as the critical relative density model, was applied to simulate the densification behavior of magnesium powders. In addition, a new approach that extracts the mechanical characteristics of both the powder and the matrix was developed. The model was implemented into the finite element method, with which powder compaction under equal channel angular pressing was simulated.


Key Engineering Materials | 2007

Processing Conditions and Mechanical Properties of Fine Grained Mg by Equal Channel Angular Pressing

Seung Chae Yoon; Young Gi Jeong; Sun Ig Hong; Byong Sun Chun; Hong Rho Lee; Kyeong Ho Baik; Hyoung Seop Kim

Mg and Mg alloys are promising materials for light weight high strength applications. In this paper, grain refinement of pure Mg using severe plastic deformation was tried to enhance mechanical properties of the hard-to-deform metallic material. The microstructure and the mechanical properties of Mg processed by equal channel angular pressing (ECAP) at various processing temperatures were investigated experimentally. ECAP of channel angle of 90o and corner angle of 0o was successful without fracture of the samples at 300 oC. The hardness of the ECAP processed Mg decreased with increasing ECAP processing temperature. The effect of temperature on the hardness and microstructure of the ECAP processed Mg were explained by the dislocation glide in the basal plane and non-basal slip systems and the dynamic recrystallization and recovery.

Collaboration


Dive into the Seung Chae Yoon's collaboration.

Top Co-Authors

Avatar

Hyoung Seop Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Sun Ig Hong

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyoungseop Kim

Kyushu Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pham Quang

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Won Sun Ryu

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hong Rho Lee

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge