Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung Han Woo is active.

Publication


Featured researches published by Seung Han Woo.


Bioresource Technology | 2010

ADSORPTION OF CONGO RED BY CHITOSAN HYDROGEL BEADS IMPREGNATED WITH CARBON NANOTUBES

Sudipta Chatterjee; Min W. Lee; Seung Han Woo

The adsorption performance of chitosan (CS) hydrogel beads was investigated after multiwalled carbon nanotubes (MWCNTs) impregnation for the removal of congo red (CR) as an anionic dye. The study of the adsorption capacity of CS/CNT beads as a function of the CNT concentration indicated that 0.01% CNT impregnation was the most useful for enhancing the adsorption capacity. The sulfur (%) in the CS/CNT beads measured by energy dispersive X-ray (EDX) was 2.5 times higher than that of normal CS beads after CR adsorption. Equilibrium adsorption isotherm data of the CS/CNT beads exhibited better fit to the Langmuir isotherm model than to the Freundlich isotherm model, and the heterogeneity factor (n) value of the CS/CNT beads calculated from the Sips isotherm model was close to unity (0.98). The maximum adsorption capacity of CS/CNT beads obtained from the Langmuir model was 450.4 mg g(-1).


Bioresource Technology | 2009

Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide

Sudipta Chatterjee; Dae S. Lee; Min W. Lee; Seung Han Woo

The adsorption of congo red (CR) onto chitosan (CS) beads impregnated by a cationic surfactant (CTAB, cetyl trimethyl ammonium bromide) was investigated. Chitosan beads impregnated at a ratio of 1/20 of CTAB to CS (0.05% of CTAB and 1% of CS) increased the CR adsorption capacity by 2.2 times from 162.3 mg/g (0% CTAB) to 352.5 mg/g (0.05% CTAB). The CR adsorption decreased with an increase in pH of the CR solution from 4.0 to 9.0. The Sips isotherm model showed a good fit with the equilibrium experimental data and the values of the heterogeneity factor (n) indicated heterogeneous adsorption of CR onto CS/CTAB beads, as well as CS beads. The kinetic data showed better fit to the pseudo second-order rate model than to the pseudo first-order rate model. The impregnation of CS beads by cationic surfactants showed the highest adsorption capacities of CR compared to any other adsorbents and would be a good method to increase adsorption efficiency for the removal of anionic dyes in a wastewater treatment process.


Journal of Hazardous Materials | 2009

Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants

Chi K. Ahn; Donghee Park; Seung Han Woo; Jong M. Park

To increase their capacity to adsorb heavy metals, activated carbons were impregnated with the anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), or dioctyl sulfosuccinate sodium (DSS). Surfactant-impregnated activated carbons removed Cd(II) at up to 0.198 mmol g(-1), which was more than an order of magnitude better than the Cd(II) removal performance of activated carbon without surfactant (i.e., 0.016 mmol g(-1)) even at optimal pH (i.e., pH 6). The capacity of the activated carbon to adsorb Cd(II) increased in proportion to the quantity of surfactant with which they were impregnated. The kinetics of the adsorption of Cd(II) onto the surfactant-impregnated activated carbon was best described by a pseudo-second-order model, and was described better by the Freundlich adsorption isotherm than by the Langmuir isotherm. The surface charge of activated carbon was negative in all pH ranges tested (2-6). These results indicate that surface modification with anionic surfactant could be used to significantly enhance the capacity of activated carbon to adsorb cations.


Journal of Hazardous Materials | 2009

The removal of nitrate from aqueous solutions by chitosan hydrogel beads.

Sudipta Chatterjee; Seung Han Woo

A physico-chemical investigation of the adsorption of nitrate by chitosan hydrobeads was conducted. The adsorption of nitrate by chitosan hydrobeads was increased with a decrease in the pH of the solution. The adsorption process was found to be temperature dependant with an optimum activity at 30 degrees C. Adsorption capacity was found to decrease with increases in temperature after 30 degrees C, indicating the exothermic nature of this process. Theoretical correlation of the experimental equilibrium adsorption data for the nitrate-chitosan hydrobeads system was properly explained by the Langmuir isotherm model. This was supported by the fact that homogeneity index was close to unity (0.98-1.08) from Langmuir-Freundlich isotherm model. The maximum adsorption capacity was 92.1mg/g at 30 degrees C. The kinetic results corresponded well with the pseudo-second-order rate equation. Intra-particle diffusion also played a significant role at the initial stage of the adsorption process. Thermodynamic parameters such as the Gibbs free energy (DeltaG(0)), enthalpy (DeltaH(0)), and entropy (DeltaS(0)) for the nitrate adsorption were estimated. Results suggest that the adsorption process is a spontaneous, exothermic process that has positive entropy. Desorption of nitrate from the loaded beads was accomplished by increasing the pH of the solution to the alkaline range, and a desorption ratio of 87% was achieved around pH 12.0.


Bioresource Technology | 2009

Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant

Sudipta Chatterjee; Dae S. Lee; Min W. Lee; Seung Han Woo

The adsorption performance of CS beads impregnated with triton X-100 (TX-100) as a nonionic surfactant and sodium dodecyl sulfate (SDS) as an anionic surfactant was investigated for the removal of anionic dye (congo red) from aqueous solution. While the adsorption capacity of CS/TX-100 beads was enhanced at all concentrations of TX-100 (0.005-0.1%), the increase in the concentration of SDS above 0.01% in the CS/SDS beads gradually reduced the adsorption capacity of the beads. Equilibrium adsorption isotherm data indicated a good fit to the Sips isotherm model and a heterogeneous adsorption process. The Sips maximum adsorption capacity in dry weight of the CS/TX-100 beads was 378.79 mg/g and 318.47 mg/g for the CS/SDS beads, higher than the 223.25mg/g of the CS beads. Modification of CS beads by impregnation with nonionic surfactant, or even anionic surfactant, at low concentrations is a possible way to enhance adsorption of anionic dye.


Journal of Hazardous Materials | 2009

Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate.

Sudipta Chatterjee; Dae S. Lee; Min W. Lee; Seung Han Woo

The investigation of adsorption of nitrate onto chitosan beads modified by cross-linking with epichlorohydrin (ECH) and surface conditioning with sodium bisulfate was performed. The results indicated that both cross-linking and conditioning increased adsorption capacity compared to normal chitosan beads. The maximum adsorption capacity was found at a cross-linking ratio of 0.4 and conditioning concentration of 0.1mM NaHSO(4). The maximum adsorption capacity was 104.0 mg g(-1) for the conditioned cross-linked chitosan beads at pH 5, while it was 90.7 mg g(-1) for normal chitosan beads. The Langmuir isotherm model fit the equilibrium data better than the Freundlich model. The mean adsorption energies obtained from the Dubinin-Radushkevich isotherm model for all adsorption systems were in the range of 9.55-9.71 kJ mol(-1), indicating that physical electrostatic force was potentially involved in the adsorption process.


Bioresource Technology | 2010

A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation

Sudipta Chatterjee; Tania Chatterjee; Seung Han Woo

A new type of chitosan hydrogel beads (CSB) with a core-shell membrane structure was generated by sodium dodecyl sulfate (SDS) gelation process. CSB exhibited higher mechanical strength and acid stability than chitosan hydrogel beads (CB) formed by alkali gelation. The effect of SDS concentration variation during gelation on the adsorption capacity of CSB for congo red (CR) as a model anionic dye showed that CSB formed by 4gl(-1) SDS gelation had the highest adsorption capacity. The maximum adsorption capacity of CSB (208.3mgg(-1)) obtained from the Sips model was found slightly higher than that of CB (200.0mgg(-1)). Membrane materials of CSB obtained after squeezing core water from the beads showed approximately 25 times higher volumetric adsorption capacity than CB.


Environmental Technology | 2011

Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation

Sudipta Chatterjee; Tania Chatterjee; Seong-Rin Lim; Seung Han Woo

Chitosan hydrogel beads (CSB) formed by sodium dodecyl sulphate (SDS) gelation were used for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The adsorption capacity of chitosan beads (CB) formed by alkali gelation was low because of charge repulsions between the chitosan (CS) and the MB. The adsorption capacity of CSB (4 g/L SDS gelation) for MB (100 mg/L) was 129.44 mg/g, and it decreased significantly with increasing SDS concentration during gelation. This decrease was a result of increased density of the CSB membrane materials. The CSB membrane materials formed with the 4 g/L SDS gelation showed the highest volumetric adsorption capacity. The MB adsorption on to CB and CSB increased with increasing values for the initial pH of solution. Data from both CB and CSB showed good fit to Sips isotherm models, and the maximum adsorption capacity of CSB (226.24 mg/g) was higher than that of CB (99.01 mg/g).


Bioresource Technology | 2011

Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution.

Sudipta Chatterjee; Tania Chatterjee; Seong-Rin Lim; Seung Han Woo

The adsorption performance of chitosan (CS) hydrogel beads (CSBs) generated by sodium dodecyl sulfate (SDS) gelation with multi-walled carbon nanotube (CNT) impregnation was investigated for Congo red removal as a model anionic dye. CNT-impregnated CSBs were prepared by four different strategies for dispersing CNTs: (a) in CS solution (CSBN1), (b) in SDS solution (CSBN2), (c) in CS solution containing cetyltrimethylammonium bromide (CTAB) (CSBN3), and (d) in SDS solution for gelation with CTAB-containing CS solution (CSBN4). It was observed from FE-SEM study that depending on nature of CNT dispersion, CNTs were found on the outer surface of CSBN2 and CSBN4 only. The adsorption capacity of the CSBs varied with the strategy used for CNT impregnation, and CSBN4 exhibited the highest maximum adsorption capacity (375.94 mg/g) from the Sips model. The lowest Sips maximum adsorption capacity by CSBN3 (121.07 mg/g) suggested significant blocking of binding sites of CS by CNT impregnation.


Journal of Biotechnology | 2009

Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains

Young Mi Kim; Chi Kyu Ahn; Seung Han Woo; Gyoo Yeol Jung; Jong Moon Park

Three different bacteria capable of degrading phenanthrene were isolated from sludge of a pulp wastewater treatment plant and identified as Acinetobacter baumannii, Klebsiella oxytoca, and Stenotrophomonas maltophilia. Phenanthrene degradation efficiencies by different combinations (consortia) of these bacteria were investigated and their population dynamics during phenanthrene degradation were monitored using capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP). When a single microorganism was used, phenanthrene degradation efficiency was very low (48.0, 11.0, and 9.0% for A. baumannii, K. oxytoca, and S. maltophilia respectively, after 360 h cultivation). All consortia that included S. maltophilia degraded approximately 80.0% of phenanthrene and reduced lag time to 48 h compared to the 168 h of pure A. baumannii culture. CE-SSCP analysis showed that S. maltophilia was the predominant species during phenanthrene degradation in the mixed culture. The results indicate that mixed cultures of microorganisms may effectively degrade target chemicals, even if the microorganisms show low degradation activity in pure culture.

Collaboration


Dive into the Seung Han Woo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong Moon Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tania Chatterjee

Hanbat National University

View shared research outputs
Top Co-Authors

Avatar

Dae S. Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Dae Sung Lee

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Jong M. Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chi Kyu Ahn

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seong-Rin Lim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Min Woo Lee

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge