Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung K. Kim is active.

Publication


Featured researches published by Seung K. Kim.


Nature Genetics | 2011

Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters

Tiffany Hung; Yulei Wang; Michael F. Lin; Ashley K. Koegel; Yojiro Kotake; Gavin D. Grant; Hugo M. Horlings; Nilay Shah; Christopher B. Umbricht; Pei Wang; Yu Wang; Benjamin Kong; Anita Langerød; Anne Lise Børresen-Dale; Seung K. Kim; Marc J. van de Vijver; Saraswati Sukumar; Michael L. Whitfield; Manolis Kellis; Yue Xiong; David J. Wong; Howard Y. Chang

Transcription of long noncoding RNAs (lncRNAs) within gene regulatory elements can modulate gene activity in response to external stimuli, but the scope and functions of such activity are not known. Here we use an ultrahigh-density array that tiles the promoters of 56 cell-cycle genes to interrogate 108 samples representing diverse perturbations. We identify 216 transcribed regions that encode putative lncRNAs, many with RT-PCR–validated periodic expression during the cell cycle, show altered expression in human cancers and are regulated in expression by specific oncogenic stimuli, stem cell differentiation or DNA damage. DNA damage induces five lncRNAs from the CDKN1A promoter, and one such lncRNA, named PANDA, is induced in a p53-dependent manner. PANDA interacts with the transcription factor NF-YA to limit expression of pro-apoptotic genes; PANDA depletion markedly sensitized human fibroblasts to apoptosis by doxorubicin. These findings suggest potentially widespread roles for promoter lncRNAs in cell-growth control.


Nature | 2006

NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21

Joseph R. Arron; Monte M. Winslow; Alberto Polleri; Ching Pin Chang; Hai Wu; Xin Gao; Joel R. Neilson; Lei Chen; Jeremy J. Heit; Seung K. Kim; Nobuyuki Yamasaki; Tsuyoshi Miyakawa; Uta Francke; Isabella A. Graef; Gerald R. Crabtree

Trisomy 21 results in Downs syndrome, but little is known about how a 1.5-fold increase in gene dosage produces the pleiotropic phenotypes of Downs syndrome. Here we report that two genes, DSCR1 and DYRK1A , lie within the critical region of human chromosome 21 and act synergistically to prevent nuclear occupancy of NFATc transcription factors, which are regulators of vertebrate development. We use mathematical modelling to predict that autoregulation within the pathway accentuates the effects of trisomy of DSCR1 and DYRK1A, leading to failure to activate NFATc target genes under specific conditions. Our observations of calcineurin-and Nfatc-deficient mice, Dscr1- and Dyrk1a–overexpressing mice, mouse models of Downs syndrome and human trisomy 21 are consistent with these predictions. We suggest that the 1.5-fold increase in dosage of DSCR1 and DYRK1A cooperatively destabilizes a regulatory circuit, leading to reduced NFATc activity and many of the features of Downs syndrome. More generally, these observations suggest that the destabilization of regulatory circuits can underlie human disease.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells

Yuichi Hori; Ingrid C. Rulifson; Bernette C. Tsai; Jeremy J. Heit; John D. Cahoy; Seung K. Kim

The use of embryonic stem cells for cell-replacement therapy in diseases like diabetes mellitus requires methods to control the development of multipotent cells. We report that treatment of mouse embryonic stem cells with inhibitors of phosphoinositide 3-kinase, an essential intracellular signaling regulator, produced cells that resembled pancreatic β cells in several ways. These cells aggregated in structures similar, but not identical, to pancreatic islets of Langerhans, produced insulin at levels far greater than previously reported, and displayed glucose-dependent insulin release in vitro. Transplantation of these cell aggregates increased circulating insulin levels, reduced weight loss, improved glycemic control, and completely rescued survival in mice with diabetes mellitus. Graft removal resulted in rapid relapse and death. Graft analysis revealed that transplanted insulin-producing cells remained differentiated, enlarged, and did not form detectable tumors. These results provide evidence that embryonic stem cells can serve as the source of insulin-producing replacement tissue in an experimental model of diabetes mellitus. Strategies for producing cells that can replace islet functions described here can be adapted for similar uses with human cells.


Nature | 2006

Calcineurin/NFAT signalling regulates pancreatic β-cell growth and function

Jeremy J. Heit; Åsa A. Apelqvist; Xueying Gu; Monte M. Winslow; Joel R. Neilson; Gerald R. Crabtree; Seung K. Kim

The growth and function of organs such as pancreatic islets adapt to meet physiological challenges and maintain metabolic balance, but the mechanisms controlling these facultative responses are unclear. Diabetes in patients treated with calcineurin inhibitors such as cyclosporin A indicates that calcineurin/nuclear factor of activated T-cells (NFAT) signalling might control adaptive islet responses, but the roles of this pathway in β-cells in vivo are not understood. Here we show that mice with a β-cell-specific deletion of the calcineurin phosphatase regulatory subunit, calcineurin b1 (Cnb1), develop age-dependent diabetes characterized by decreased β-cell proliferation and mass, reduced pancreatic insulin content and hypoinsulinaemia. Moreover, β-cells lacking Cnb1 have a reduced expression of established regulators of β-cell proliferation. Conditional expression of active NFATc1 in Cnb1-deficient β-cells rescues these defects and prevents diabetes. In normal adult β-cells, conditional NFAT activation promotes the expression of cell-cycle regulators and increases β-cell proliferation and mass, resulting in hyperinsulinaemia. Conditional NFAT activation also induces the expression of genes critical for β-cell endocrine function, including all six genes mutated in hereditary forms of monogenic type 2 diabetes. Thus, calcineurin/NFAT signalling regulates multiple factors that control growth and hallmark β-cell functions, revealing unique models for the pathogenesis and therapy of diabetes.


Nature | 2004

Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells

Seung K. Kim; Eric Rulifson

Antagonistic activities of glucagon and insulin control metabolism in mammals, and disruption of this balance underlies diabetes pathogenesis. Insulin-producing cells (IPCs) in the brain of insects such as Drosophila also regulate serum glucose, but it remains unclear whether insulin is the sole hormonal regulator of glucose homeostasis and whether mechanisms of glucose-sensing and response in IPCs resemble those in pancreatic islets. Here we show, by targeted cell ablation, that Drosophila corpora cardiaca (CC) cells of the ring gland are also essential for larval glucose homeostasis. Unlike IPCs, CC cells express Drosophila cognates of sulphonylurea receptor (Sur) and potassium channel (Ir), proteins that comprise ATP-sensitive potassium channels regulating hormone secretion by islets and other mammalian glucose-sensing cells. They also produce adipokinetic hormone, a polypeptide with glucagon-like functions. Glucose regulation by CC cells is impaired by exposure to sulphonylureas, drugs that target the Sur subunit. Furthermore, ubiquitous expression of an akh transgene reverses the effect of CC ablation on serum glucose. Thus, Drosophila CC cells are crucial regulators of glucose homeostasis and they use glucose-sensing and response mechanisms similar to islet cells.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Wnt signaling regulates pancreatic β cell proliferation

Ingrid C. Rulifson; Satyajit K. Karnik; Patrick W. Heiser; Derk ten Berge; Hainan Chen; Xueying Gu; Makoto M. Taketo; Roel Nusse; Matthias Hebrok; Seung K. Kim

There is widespread interest in defining factors and mechanisms that stimulate proliferation of pancreatic islet cells. Wnt signaling is an important regulator of organ growth and cell fates, and genes encoding Wnt-signaling factors are expressed in the pancreas. However, it is unclear whether Wnt signaling regulates pancreatic islet proliferation and differentiation. Here we provide evidence that Wnt signaling stimulates islet β cell proliferation. The addition of purified Wnt3a protein to cultured β cells or islets promoted expression of Pitx2, a direct target of Wnt signaling, and Cyclin D2, an essential regulator of β cell cycle progression, and led to increased β cell proliferation in vitro. Conditional pancreatic β cell expression of activated β-catenin, a crucial Wnt signal transduction protein, produced similar phenotypes in vivo, leading to β cell expansion, increased insulin production and serum levels, and enhanced glucose handling. Conditional β cell expression of Axin, a potent negative regulator of Wnt signaling, led to reduced Pitx2 and Cyclin D2 expression by β cells, resulting in reduced neonatal β cell expansion and mass and impaired glucose tolerance. Thus, Wnt signaling is both necessary and sufficient for islet β cell proliferation, and our study provides previously unrecognized evidence of a mechanism governing endocrine pancreas growth and function.


Genes & Development | 2009

Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus

Hainan Chen; Xueying Gu; I-hsin Su; Rita Bottino; Juan L. Contreras; Alexander Tarakhovsky; Seung K. Kim

Proliferation of pancreatic islet beta cells is an important mechanism for self-renewal and for adaptive islet expansion. Increased expression of the Ink4a/Arf locus, which encodes the cyclin-dependent kinase inhibitor p16(INK4a) and tumor suppressor p19(Arf), limits beta-cell regeneration in aging mice, but the basis of beta-cell Ink4a/Arf regulation is poorly understood. Here we show that Enhancer of zeste homolog 2 (Ezh2), a histone methyltransferase and component of a Polycomb group (PcG) protein complex, represses Ink4a/Arf in islet beta cells. Ezh2 levels decline in aging islet beta cells, and this attrition coincides with reduced histone H3 trimethylation at Ink4a/Arf, and increased levels of p16(INK4a) and p19(Arf). Conditional deletion of beta-cell Ezh2 in juvenile mice also reduced H3 trimethylation at the Ink4a/Arf locus, leading to precocious increases of p16(INK4a) and p19(Arf). These mutant mice had reduced beta-cell proliferation and mass, hypoinsulinemia, and mild diabetes, phenotypes rescued by germline deletion of Ink4a/Arf. beta-Cell destruction with streptozotocin in controls led to increased Ezh2 expression that accompanied adaptive beta-cell proliferation and re-establishment of beta-cell mass; in contrast, mutant mice treated similarly failed to regenerate beta cells, resulting in lethal diabetes. Our discovery of Ezh2-dependent beta-cell proliferation revealed unique epigenetic mechanisms underlying normal beta-cell expansion and beta-cell regenerative failure in diabetes pathogenesis.


Current Opinion in Genetics & Development | 2002

Signaling and transcriptional control of pancreatic organogenesis.

Seung K. Kim; Raymond J. MacDonald

The results of several new studies encourage a revision of fundamental hypotheses concerning the cellular and molecular mechanisms underlying pancreatic morphogenesis and cell differentiation in the embryo. The roles of FGF- and BMP-signaling indicate a fundamental difference in the induction of the dorsal and the ventral pancreatic anlage. Final commitment to the pancreatic fate requires the action of several transcriptional regulators including IPF1/PDX1, PBX1 and PTF1-P48 after the onset of pancreatic bud formation. Two, largely independent endocrine cell lineages develop during the formation of the embryonic pancreas. Lineage tracing has begun to refine our understanding of the origins of the acinar, ductal and islet cells.


Diabetes | 2007

Glucose Infusion in Mice: A New Model to Induce β-Cell Replication

Laura C. Alonso; Takuya Yokoe; Pili Zhang; Donald K. Scott; Seung K. Kim; Christopher P. O'Donnell; Adolfo Garcia-Ocaña

Developing new techniques to induce β-cells to replicate is a major goal in diabetes research. Endogenous β-cells replicate in response to metabolic changes, such as obesity and pregnancy, which increase insulin requirement. Mouse genetic models promise to reveal the pathways responsible for compensatory β-cell replication. However, no simple, short-term, physiological replication stimulus exists to test mouse models for compensatory replication. Here, we present a new tool to induce β-cell replication in living mice. Four-day glucose infusion is well tolerated by mice as measured by hemodynamics, body weight, organ weight, food intake, and corticosterone level. Mild sustained hyperglycemia and hyperinsulinemia induce a robust and significant fivefold increase in β-cell replication. Glucose-induced β-cell replication is dose and time dependent. β-Cell mass, islet number, β-cell size, and β-cell death are not altered by glucose infusion over this time frame. Glucose infusion increases both the total protein abundance and nuclear localization of cyclin D2 in islets, which has not been previously reported. Thus, we have developed a new model to study the regulation of compensatory β-cell replication, and we describe important novel characteristics of mouse β-cell responses to glucose in the living pancreas.


Nature | 2011

PDGF signalling controls age-dependent proliferation in pancreatic β-cells

Hainan Chen; Xueying Gu; Yinghua Liu; Jing Wang; Stacey E. Wirt; Rita Bottino; Hubert Schorle; Julien Sage; Seung K. Kim

Determining the signalling pathways that direct tissue expansion is a principal goal of regenerative biology. Vigorous pancreatic β-cell replication in juvenile mice and humans declines with age, and elucidating the basis for this decay may reveal strategies for inducing β-cell expansion, a long-sought goal for diabetes therapy. Here we show that platelet-derived growth factor receptor (Pdgfr) signalling controls age-dependent β-cell proliferation in mouse and human pancreatic islets. With age, declining β-cell Pdgfr levels were accompanied by reductions in β-cell enhancer of zeste homologue 2 (Ezh2) levels and β-cell replication. Conditional inactivation of the Pdgfra gene in β-cells accelerated these changes, preventing mouse neonatal β-cell expansion and adult β-cell regeneration. Targeted human PDGFR-α activation in mouse β-cells stimulated Erk1/2 phosphorylation, leading to Ezh2-dependent expansion of adult β-cells. Adult human islets lack PDGF signalling competence, but exposure of juvenile human islets to PDGF-AA stimulated β-cell proliferation. The discovery of a conserved pathway controlling age-dependent β-cell proliferation indicates new strategies for β-cell expansion.

Collaboration


Dive into the Seung K. Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rita Bottino

Allegheny Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge