Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung Min Jeong is active.

Publication


Featured researches published by Seung Min Jeong.


Cell | 2013

The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4

Alfred Csibi; Sarah-Maria Fendt; Chenggang Li; George Poulogiannis; Andrew Y. Choo; Douglas J. Chapski; Seung Min Jeong; Jamie M. Dempsey; Andrey Parkhitko; Tasha Morrison; Elizabeth P. Henske; Marcia C. Haigis; Lewis C. Cantley; Gregory Stephanopoulos; Jane Yu; John Blenis

Proliferating mammalian cells use glutamine as a source of nitrogen and as a key anaplerotic source to provide metabolites to the tricarboxylic acid cycle (TCA) for biosynthesis. Recently, mammalian target of rapamycin complex 1 (mTORC1) activation has been correlated with increased nutrient uptake and metabolism, but no molecular connection to glutaminolysis has been reported. Here, we show that mTORC1 promotes glutamine anaplerosis by activating glutamate dehydrogenase (GDH). This regulation requires transcriptional repression of SIRT4, the mitochondrial-localized sirtuin that inhibits GDH. Mechanistically, mTORC1 represses SIRT4 by promoting the proteasome-mediated destabilization of cAMP-responsive element binding 2 (CREB2). Thus, a relationship between mTORC1, SIRT4, and cancer is suggested by our findings. Indeed, SIRT4 expression is reduced in human cancer, and its overexpression reduces cell proliferation, transformation, and tumor development. Finally, our data indicate that targeting nutrient metabolism in energy-addicted cancers with high mTORC1 signaling may be an effective therapeutic approach.


Cancer Cell | 2013

SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

Seung Min Jeong; Cuiying Xiao; Lydia W.S. Finley; Tyler Lahusen; Amanda Souza; Kerry A. Pierce; Ying-Hua Li; Xiaoxu Wang; Gaëlle Laurent; Natalie J. German; Xiaoling Xu; Cuiling Li; Rui-Hong Wang; Jaewon Lee; Alfredo Csibi; Richard A. Cerione; John Blenis; Clary B. Clish; Alec C. Kimmelman; Chu-Xia Deng; Marcia C. Haigis

DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here, we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into tricarboxylic acid cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest, and tumor suppression.


Cancer Cell | 2011

Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors.

Thomas De Raedt; Zandra E. Walton; Jessica L. Yecies; Danan Li; Yimei Chen; Clare F. Malone; Ophélia Maertens; Seung Min Jeong; Roderick T. Bronson; Valerie S. LeBleu; Raghu Kalluri; Emmanuel Normant; Marcia C. Haigis; Brendan D. Manning; Kwok-Kin Wong; Kay F. Macleod; Karen Cichowski

Ras-driven tumors are often refractory to conventional therapies. Here we identify a promising targeted therapeutic strategy for two Ras-driven cancers: Nf1-deficient malignancies and Kras/p53 mutant lung cancer. We show that agents that enhance proteotoxic stress, including the HSP90 inhibitor IPI-504, induce tumor regression in aggressive mouse models, but only when combined with rapamycin. These agents synergize by promoting irresolvable ER stress, resulting in catastrophic ER and mitochondrial damage. This process is fueled by oxidative stress, which is caused by IPI-504-dependent production of reactive oxygen species, and the rapamycin-dependent suppression of glutathione, an important endogenous antioxidant. Notably, the mechanism by which these agents cooperate reveals a therapeutic paradigm that can be expanded to develop additional combinations.


Molecular and Cellular Biology | 2013

SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation.

Gaëlle Laurent; Vincent C.J. de Boer; Lydia W.S. Finley; Meredith Sweeney; Hong Lu; Thaddeus T. Schug; Yana Cen; Seung Min Jeong; Xiaoling Li; Anthony A. Sauve; Marcia C. Haigis

ABSTRACT Sirtuins are a family of protein deacetylases, deacylases, and ADP-ribosyltransferases that regulate life span, control the onset of numerous age-associated diseases, and mediate metabolic homeostasis. We have uncovered a novel role for the mitochondrial sirtuin SIRT4 in the regulation of hepatic lipid metabolism during changes in nutrient availability. We show that SIRT4 levels decrease in the liver during fasting and that SIRT4 null mice display increased expression of hepatic peroxisome proliferator-activated receptor α (PPARα) target genes associated with fatty acid catabolism. Accordingly, primary hepatocytes from SIRT4 knockout (KO) mice exhibit higher rates of fatty acid oxidation than wild-type hepatocytes, and SIRT4 overexpression decreases fatty acid oxidation rates. The enhanced fatty acid oxidation observed in SIRT4 KO hepatocytes requires functional SIRT1, demonstrating a clear cross talk between mitochondrial and nuclear sirtuins. Thus, SIRT4 is a new component of mitochondrial signaling in the liver and functions as an important regulator of lipid metabolism.


Journal of Biological Chemistry | 2014

SIRT4 Protein Suppresses Tumor Formation in Genetic Models of Myc-induced B Cell Lymphoma

Seung Min Jeong; Annie Lee; Jaewon Lee; Marcia C. Haigis

Background: Glutamine metabolism is essential for Myc-induced tumors. Results: SIRT4 regulates mitochondrial glutamine metabolism and the growth and survival of Burkitt lymphoma cells independent of Myc. Conclusion: SIRT4 has a tumor-suppressive role in Myc-induced B cell lymphoma. Significance: SIRT4 may be a potential target against Myc-driven and glutamine-dependent tumors. Glutamine metabolism plays an essential role for growth and proliferation of many cancer cells by providing metabolites for the maintenance of mitochondrial functions and macromolecular synthesis. Aberrant activation of the transcription factor c-Myc, e.g. caused by t(8;14) chromosomal translocation commonly found in Burkitt lymphoma, is a key driver of cellular glutamine metabolism in many tumors, highlighting the need to identify molecular mechanisms that can suppress glutamine usage in these cancers. Recently, the mitochondrial sirtuin SIRT4 has been reported to function as a tumor suppressor by regulating glutamine metabolism, suggesting that it might have therapeutic potential for treating glutamine-dependent cancers. Here, we report that SIRT4 represses Myc-induced B cell lymphomagenesis via inhibition of mitochondrial glutamine metabolism. We found that SIRT4 overexpression can dampen glutamine utilization even in Myc-driven human Burkitt lymphoma cells and inhibit glutamine-dependent proliferation of these cells. Importantly, SIRT4 overexpression sensitizes Burkitt lymphoma cells to glucose depletion and synergizes with pharmacological glycolysis inhibitors to induce cell death. Moreover, SIRT4 loss in a genetic mouse model of Myc-induced Burkitt lymphoma, Eμ-Myc transgenic mouse, greatly accelerates lymphomagenesis and mortality. Indeed, Eμ-Myc-induced B cell lymphoma cells from SIRT4 null mice exhibit increased glutamine uptake and glutamate dehydrogenase activity. Furthermore, we establish that SIRT4 regulates glutamine metabolism independent of Myc. Together, these results highlight the tumor-suppressive role of SIRT4 in Myc-induced B cell lymphoma and suggest that SIRT4 may be a potential target against Myc-induced and/or glutamine-dependent cancers.


Oncogene | 2015

SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1

Seung Min Jeong; Jaewon Lee; Lydia W.S. Finley; P J Schmidt; M D Fleming; Marcia C. Haigis

Iron metabolism is essential for many cellular processes, including oxygen transport, respiration and DNA synthesis, and many cancer cells exhibit dysregulation in iron metabolism. Maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which control the expression of iron-related genes by binding iron-responsive elements (IREs) of target mRNAs. Here, we report that mitochondrial SIRT3 regulates cellular iron metabolism by modulating IRP1 activity. SIRT3 loss increases reactive oxygen species production, leading to elevated IRP1 binding to IREs. As a consequence, IRP1 target genes, such as the transferrin receptor (TfR1), a membrane-associated glycoprotein critical for iron uptake and cell proliferation, are controlled by SIRT3. Importantly, SIRT3 deficiency results in a defect in cellular iron homeostasis. SIRT3 null cells contain high levels of iron and lose iron-dependent TfR1 regulation. Moreover, SIRT3 null mice exhibit higher levels of iron and TfR1 expression in the pancreas. We found that the regulation of iron uptake and TfR1 expression contribute to the tumor-suppressive activity of SIRT3. Indeed, SIRT3 expression is negatively correlated with TfR1 expression in human pancreatic cancers. SIRT3 overexpression decreases TfR1 expression by inhibiting IRP1 and represses proliferation in pancreatic cancer cells. Our data uncover a novel role of SIRT3 in cellular iron metabolism through IRP1 regulation and suggest that SIRT3 functions as a tumor suppressor, in part, by modulating cellular iron metabolism.


Molecules and Cells | 2015

Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism

Seung Min Jeong; Marcia C. Haigis

Genomic instability and altered metabolism are key features of most cancers. Recent studies suggest that metabolic reprogramming is part of a systematic response to cellular DNA damage. Thus, defining the molecules that fine-tune metabolism in response to DNA damage will enhance our understanding of molecular mechanisms of tumorigenesis and have profound implications for the development of strategies for cancer therapy. Sirtuins have been established as critical regulators in cellular homeostasis and physiology. Here, we review the emerging data revealing a pivotal function of sirtuins in genome maintenance and cell metabolism, and highlight current advances about the phenotypic consequences of defects in these critical regulators in tumorigenesis. While many questions should be addressed about the regulation and context-dependent functions of sirtuins, it appears clear that sirtuins may provide a promising, exciting new avenue for cancer therapy.


Journal of Biological Chemistry | 2010

The SWI/SNF Chromatin-remodeling Complex Modulates Peripheral T Cell Activation and Proliferation by Controlling AP-1 Expression

Seung Min Jeong; Changjin Lee; Sung Kyu Lee; Ji-Eun Kim; Rho Hyun Seong

The SWI/SNF chromatin-remodeling complex has been implicated in the activation and proliferation of T cells. After T cell receptor signaling, the SWI/SNF complex rapidly associates with chromatin and controls gene expression in T cells. However, the process by which the SWI/SNF complex regulates peripheral T cell activation has not been elucidated. In this study, we show that the SWI/SNF complex regulates cytokine production and proliferation of T cells. During T cell activation, the SWI/SNF complex is recruited to the promoter of the transcription factor AP-1, and it increases the expression of AP-1. Increased expression of the SWI/SNF complex resulted in enhanced AP-1 activity, cytokine production, and proliferation of peripheral T cells, whereas knockdown of the SWI/SNF complex expression impaired the AP-1 expression and reduced the activation and proliferation of T cells. Moreover, mice that constitutively expressed the SWI/SNF complex in T cells were much more susceptible to experimentally induced autoimmune encephalomyelitis than the normal mice were. These results suggest that the SWI/SNF complex plays a critical role during T cell activation and subsequent immune responses.


Biochemical and Biophysical Research Communications | 2016

Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation.

Seung Min Jeong; Sunsook Hwang; Rho Hyun Seong

The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer.


Biochemical and Biophysical Research Communications | 2016

SIRT4 regulates cancer cell survival and growth after stress.

Seung Min Jeong; Sunsook Hwang; Rho Hyun Seong

Cellular stresses initiate well-coordinated signaling response pathways. As the proper regulation of stress is essential for cellular homeostasis, the defects of stress response pathways result in functional deficits and cell death. Although mitochondrial SIRT4 has been shown to be involved in cellular stress response and tumor suppression, its roles in survival and drug resistance of cancer cells are not well determined. Here we show that SIRT4 is a crucial regulator of the stress resistance of cancer cells. SIRT4 is highly induced by various cellular stresses and contributes to cell survival and growth after stresses. SIRT4 loss sensitizes cells to DNA damage or ER stress. Moreover, SIRT4 induction is required for tumorigenic transformation, as SIRT4 null cells are vulnerable to oncogene activation. Thus, these results suggest that SIRT4 has essential roles in stress resistance and may be an important therapeutic target for cancer treatment.

Collaboration


Dive into the Seung Min Jeong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rho Hyun Seong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sunsook Hwang

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lydia W.S. Finley

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Seungyeon Yang

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong-Hwa Lee

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Minjoong Kim

Catholic University of Korea

View shared research outputs
Researchain Logo
Decentralizing Knowledge