Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung-Mo Hong is active.

Publication


Featured researches published by Seung-Mo Hong.


Science Translational Medicine | 2014

Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies

Chetan Bettegowda; Mark Sausen; Rebecca J. Leary; Isaac Kinde; Yuxuan Wang; Nishant Agrawal; Bjarne Bartlett; Hao Wang; Brandon Luber; Rhoda M. Alani; Emmanuel S. Antonarakis; Nilofer Saba Azad; Alberto Bardelli; Henry Brem; John L. Cameron; Clarence Lee; Leslie A. Fecher; Gary L. Gallia; Peter Gibbs; Dung Le; Robert L. Giuntoli; Michael Goggins; Michael D. Hogarty; Matthias Holdhoff; Seung-Mo Hong; Yuchen Jiao; Hartmut H. Juhl; Jenny J. Kim; Giulia Siravegna; Daniel A. Laheru

Circulating tumor DNA can be used in a variety of clinical and investigational settings across tumor types and stages for screening, diagnosis, and identifying mutations responsible for therapeutic response and drug resistance. Circulating Tumor DNA for Early Detection and Managing Resistance Cancer evolves over time, without any warning signs. Similarly, the development of resistance to therapy generally becomes apparent only when there are obvious signs of tumor growth, at which point the patient may have lost valuable time. Although a repeat biopsy may be able to identify drug-resistant mutations before the tumor has a chance to regrow, it is usually not feasible to do many repeat biopsies. Now, two studies are demonstrating the utility of monitoring the patients’ blood for tumor DNA to detect cancer at the earliest stages of growth or resistance. In one study, Bettegowda and coauthors showed that sampling a patient’s blood may be sufficient to yield information about the tumor’s genetic makeup, even for many early-stage cancers, without a need for an invasive procedure to collect tumor tissue, such as surgery or endoscopy. The authors demonstrated the presence of circulating DNA from many types of tumors that had not yet metastasized or released detectable cells into the circulation. They could detect more than 50% of patients across 14 tumor types at the earliest stages, when these cancers may still be curable, suggesting that a blood draw could be a viable screening approach to detecting most cancers. They also showed that in patients with colorectal cancer, the information derived from circulating tumor DNA could be used to determine the optimal course of treatment and identify resistance to epidermal growth factor receptor (EGFR) blockade. Meanwhile, Misale and colleagues illustrated a way to use this information to overcome treatment resistance. These authors also found that mutations associated with EGFR inhibitor resistance could be detected in the blood of patients with colorectal cancer. In addition, they demonstrated that adding MEK inhibitors, another class of anticancer drugs, can successfully overcome resistance when given in conjunction with the EGFR inhibitors. Thus, the studies from Bettegowda and Misale and their colleagues show the effectiveness of analyzing circulating DNA from a variety of tumors and highlight the potential investigational and clinical applications of this novel technology for early detection, monitoring resistance, and devising treatment plans to overcome resistance. The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction–based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer.


Journal of the National Cancer Institute | 2010

Prognostic Significance of Tumorigenic Cells With Mesenchymal Features in Pancreatic Adenocarcinoma

Zeshaan Rasheed; Jie Yang; Qiuju Wang; Jeanne Kowalski; Irwin Freed; Christopher Murter; Seung-Mo Hong; Jan Bart M Koorstra; N. V. Rajeshkumar; Xiaobing He; Michael Goggins; Christine A. Iacobuzio-Donahue; David M. Berman; Daniel A. Laheru; Antonio Jimeno; Manuel Hidalgo; Anirban Maitra; William Matsui

BACKGROUND Specific populations of highly tumorigenic cells are thought to exist in many human tumors, including pancreatic adenocarcinoma. However, the clinical significance of these tumor-initiating (ie, cancer stem) cells remains unclear. Aldehyde dehydrogenase (ALDH) activity can identify tumor-initiating cells and normal stem cells from several human tissues. We examined the prognostic significance and functional features of ALDH expression in pancreatic adenocarcinoma. METHODS ALDH expression was analyzed by immunohistochemistry in 269 primary surgical specimens of pancreatic adenocarcinoma and examined for association with clinical outcomes and in paired primary tumors and metastatic lesions from eight pancreatic cancer patients who had participated in a rapid autopsy program. The clonogenic growth potential of ALDH-positive pancreatic adenocarcinoma cells was assessed in vitro by a colony formation assay and by tumor growth in immunodeficient mice (10-14 mice per group). Mesenchymal features of ALDH-positive pancreatic tumor cells were examined by using quantitative reverse transcription-polymerase chain reaction and an in vitro cell invasion assay. Gene expression levels and the invasive potential of ADLH-positive pancreatic cancer cells relative to the bulk cell population were examined by reverse transcription-polymerase chain reaction and an in vitro invasion assays, respectively. All statistical tests were two-sided. RESULTS ALDH-positive tumor cells were detected in 90 of the 269 primary surgical specimens, and their presence was associated with worse survival (median survival for patients with ALDH-positive vs ALDH-negative tumors: 14 vs 18 months, hazard ratio of death = 1.28, 95% confidence interval = 1.02 to 1.68, P = .05). Six (75%) of the eight patients with matched primary and metastatic tumor samples had ALDH-negative primary tumors, and in four (67%) of these six patients, the matched metastatic lesions (located in liver and lung) contained ALDH-positive cells. ALDH-positive cells were approximately five- to 11-fold more clonogenic in vitro and in vivo compared with unsorted or ALHD-negative cells, expressed genes consistent with a mesenchymal state, and had in vitro migratory and invasive potentials that were threefold greater than those of unsorted cells. CONCLUSIONS ALDH expression marks pancreatic cancer cells that have stem cell and mesenchymal features. The enhanced clonogenic growth and migratory properties of ALDH-positive pancreatic cancer cells suggest that they play a key role in the development of metastatic disease that negatively affects the overall survival of patients with pancreatic adenocarcinoma.


Gastroenterology | 2012

Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia

Mitsuro Kanda; Hanno Matthaei; Jian Wu; Seung-Mo Hong; Jun Yu; Michael Borges; Ralph H. Hruban; Anirban Maitra; Kenneth W. Kinzler; Bert Vogelstein; Michael Goggins

More information is needed about genetic factors that initiate development of pancreatic intraepithelial neoplasms-the most common precursors of pancreatic ductal adenocarcinoma. We show that more than 99% of the earliest-stage, lowest-grade, pancreatic intraepithelial neoplasm-1 lesions contain mutations in KRAS, p16/CDKN2A, GNAS, or BRAF. These findings could improve our understanding of the development and progression of these premalignant lesions.


American Journal of Pathology | 2011

Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes

Christopher M. Heaphy; Andrea P. Subhawong; Seung-Mo Hong; Michael Goggins; Elizabeth A. Montgomery; Edward Gabrielson; George J. Netto; Jonathan I. Epstein; Tamara L. Lotan; William H. Westra; Ie Ming Shih; Christine A. Iacobuzio-Donahue; Anirban Maitra; Qing K. Li; Charles G. Eberhart; Janis M. Taube; Dinesh Rakheja; Robert J. Kurman; T. C. Wu; Richard Roden; Pedram Argani; Angelo M. De Marzo; Luigi Terracciano; Michael Torbenson; Alan K. Meeker

Approximately 10% to 15% of human cancers lack detectable telomerase activity, and a subset of these maintain telomere lengths by the telomerase-independent telomere maintenance mechanism termed alternative lengthening of telomeres (ALT). The ALT phenotype, relatively common in subtypes of sarcomas and astrocytomas, has rarely been reported in epithelial malignancies. However, the prevalence of ALT has not been thoroughly assessed across all cancer types. We therefore comprehensively surveyed the ALT phenotype in a broad range of human cancers. In total, two independent sets comprising 6110 primary tumors from 94 different cancer subtypes, 541 benign neoplasms, and 264 normal tissue samples were assessed by combined telomere-specific fluorescence in situ hybridization and immunofluorescence labeling for PML protein. Overall, ALT was observed in 3.73% (228/6110) of all tumor specimens, but was not observed in benign neoplasms or normal tissues. This is the first report of ALT in carcinomas arising from the bladder, cervix, endometrium, esophagus, gallbladder, kidney, liver, and lung. Additionally, this is the first report of ALT in medulloblastomas, oligodendrogliomas, meningiomas, schwannomas, and pediatric glioblastoma multiformes. Previous studies have shown associations between ALT status and prognosis in some tumor types; thus, further studies are warranted to assess the potential prognostic significance and unique biology of ALT-positive tumors. These findings may have therapeutic consequences, because ALT-positive cancers are predicted to be resistant to anti-telomerase therapies.


Cancer Research | 2010

Pancreatic Cancers Epigenetically Silence SIP1 and Hypomethylate and Overexpress miR-200a/200b in Association with Elevated Circulating miR-200a and miR-200b Levels

Ang Li; Noriyuki Omura; Seung-Mo Hong; Audrey Vincent; Kimberly Walter; Margaret Griffith; Michael Borges; Michael Goggins

Aberrant DNA methylation and microRNA expression play important roles in the pathogenesis of pancreatic cancer. While interrogating differentially methylated CpG islands in pancreatic cancer, we identified two members of miR-200 family, miR-200a and miR-200b, that were hypomethylated and overexpressed in pancreatic cancer. We also identified prevalent hypermethylation and silencing of one of their downstream targets, SIP1 (ZFHX1B, ZEB2), whose protein product suppresses E-cadherin expression and contributes to epithelial mesenchymal transition. In a panel of 23 pancreatic cell lines, we observed a reciprocal correlation between miR-200, SIP1, and E-cadherin expression, with pancreatic cancer-associated fibroblasts showing the opposite expression pattern to most pancreatic cancers. In Panc-1 cells, which express SIP1, have low E-cadherin expression, and do not express miR-200a or miR-200b, treatment with miR-200a and miR-200b downregulated SIP1 mRNA and increased E-cadherin expression. However, most pancreatic cancers express miR-200a and miR-200b, but this expression does not affect SIP1 expression, as the SIP1 promoter is silenced by hypermethylation and in these cancers E-cadherin is generally expressed. Both miR-200a and miR-200b were significantly elevated in the sera of pancreatic cancer and chronic pancreatitis patients compared with healthy controls (P < 0.0001), yielding receiver operating characteristic curve areas of 0.861 and 0.85, respectively. In conclusion, most pancreatic cancers display hypomethylation and overexpression of miR-200a and miR-200b, silencing of SIP1 by promoter methylation, and retention of E-cadherin expression. The elevated serum levels of miR-200a and miR-200b in most patients with pancreatic cancer could have diagnostic utility.


Modern Pathology | 2007

Biliary intraepithelial neoplasia: an international interobserver agreement study and proposal for diagnostic criteria

Yoh Zen; N. Volkan Adsay; Krystof Bardadin; Romano Colombari; Linda D. Ferrell; Hironori Haga; Seung-Mo Hong; Prodromos Hytiroglou; Günter Klöppel; Gregory Y. Lauwers; Dirk J. van Leeuwen; Kenji Notohara; Kiyoko Oshima; Alberto Quaglia; Motoko Sasaki; Fausto Sessa; Arief A. Suriawinata; Wilson Tsui; Yutaka Atomi; Yasuni Nakanuma

Cholangiocarcinoma of the intrahepatic and extrahepatic bile ducts develops through a multistep histopathologic sequence. Premalignant or non-invasive neoplastic lesions of bile ducts have been historically called biliary dysplasia or atypical biliary epithelium. To this date, no standard terminology or classification system has been offered for these lesions. In 2005, a conceptual framework and diagnostic criteria for biliary intraepithelial neoplasia (BilIN) were proposed using the livers of patients with hepatolithiasis. We report herein an international interobserver agreement study on the diagnosis of biliary non-invasive neoplastic lesions with the goal to obtain a consensus on the terminology and grading. Seventeen pathologists from the United States, Europe and Asia participated in this study. They shared a digital file containing histological pictures of 30 foci of non-invasive neoplastic lesions selected from the biliary system of patients suffering from primary sclerosing cholangitis, choledochal cyst or hepatolithiasis. In the criteria, we proposed in 2005, BilIN was classified into three categories based on the degree of atypia: BilIN-1, BilIN-2 and BilIN-3. In this study, consensus was reached for the terminology of BilIN and the three-grade classification system. Interobserver agreement on the diagnosis was moderate (κ-value=0.45). On the basis of the suggestions and opinions obtained from the 17 participants, the original criteria for BilIN were revised. We now propose a new consensus classification of BilIN that may assist in allowing a more uniform terminology for the diagnosis of biliary non-invasive neoplastic lesions. This classification should help to advance clinical and research applications.


The American Journal of Surgical Pathology | 2009

Diagnosis of NUT midline carcinoma using a NUT-specific monoclonal antibody.

Herbert Haack; Laura A. Johnson; Christopher J. Fry; Katherine Crosby; Roberto Polakiewicz; Edward B. Stelow; Seung-Mo Hong; Brian E. Schwartz; Michael J. Cameron; Mark A. Rubin; Martin C. Chang; Christopher A. French

NUT midline carcinoma (NMC) is a uniformly lethal malignancy that is defined by rearrangement of the nuclear protein in testis (NUT) gene on chromosome 15q14. NMCs are morphologically indistinguishable from other poorly differentiated carcinomas, and the diagnosis is usually made currently by fluorescence in situ hybridization (FISH). As normal NUT expression is confined to testis and ovary, we reasoned that an immunohistochemical (IHC) stain for NUT would be useful in diagnosing NMC. To this end, we raised a highly specific rabbit monoclonal antibody, C52, against a recombinant NUT polypeptide, and developed an IHC staining protocol. The sensitivity and specificity of C52 staining was evaluated in a panel of 1068 tissues, predominantly diverse types of carcinomas (n=906), including 30 NMCs. Split-apart FISH for NUT rearrangement was used as a “gold standard” diagnostic test for NMC. C52 immunoreactivity among carcinomas was confined to NMCs. IHC staining had a sensitivity of 87%, a specificity of 100%, a negative predictive value of 99%, and a positive predictive value of 100%. Two new cases of NMC containing BRD4-NUT fusions were detected by C52 IHC, but missed by conventional FISH. In both instances, these tumors contained cryptic BRD4-NUT rearrangements, as confirmed by FISH using a refined set of probes. Some germ cell tumors, including 64% of dysgerminomas, showed weak NUT immunoreactivity, consistent with the expression of NUT in normal germ cells. We conclude that IHC staining with the C52 monoclonal antibody is a highly sensitive and specific test that reliably distinguishes NMC from other forms of carcinoma. The NUT antibody is being prepared for commercial release and will be available in the near future.


Clinical Cancer Research | 2012

MicroRNA Alterations of Pancreatic Intraepithelial Neoplasias

Jun Yu; Ang Li; Seung-Mo Hong; Ralph H. Hruban; Michael Goggins

Purpose: MicroRNA (miRNA) alterations are likely to contribute to the development of pancreatic cancer and may serve as markers for the early detection of pancreatic neoplasia. Experimental Design: To identify the miRNA alterations that arise during the development of pancreatic cancer, we determined the levels of 735 miRNAs in 34 pancreatic intraepithelial neoplasias (PanIN) and 15 normal pancreatic duct samples isolated by laser capture microdissection using TaqMan miRNA microarrays. Differential expression of selected miRNAs was confirmed by FISH analysis and by quantitative real-time reverse transcription PCR (qRT-PCR) analysis of selected candidate miRNAs in an independent set of PanIN and normal duct samples. Results: We identified 107 aberrantly expressed miRNAs in different PanIN grades compared with normal pancreatic duct samples and 35 aberrantly expressed miRNAs in PanIN-3 lesions compared with normal pancreatic duct samples. These differentially expressed miRNAs included those that have been previously identified as differentially expressed in pancreatic ductal adenocarcinomas (PDAC; including miR-21, miR-200a/b/c, miR-216a/b, miR-217, miR-146a, miR-155, miR-182, miR-196b, miR-203, miR-222, miR-338-3p, miR-486-3p, etc.) as well as miRNAs not previously described as differentially expressed in these lesions (miR-125b, miR-296-5p, miR-183*, miR-603, miR-625/*, miR-708, etc.). miR-196b was the most selectively differentially expressed miRNA in PanIN-3 lesions. Conclusions: Many miRNAs undergo aberrant expression in PanIN lesions and are likely to be important in the development of PDAC. The miRNAs, such as miR-196b, whose expression is limited to PanIN-3 lesions or pancreatic cancers could be useful as diagnostic markers. Clin Cancer Res; 18(4); 981–92. ©2011 AACR.


Molecular Cancer Therapeutics | 2010

Systemic Administration of Polymeric Nanoparticle-Encapsulated Curcumin (NanoCurc) Blocks Tumor Growth and Metastases in Preclinical Models of Pancreatic Cancer

Savita Bisht; Masamichi Mizuma; Georg Feldmann; Niki A. Ottenhof; Seung-Mo Hong; Dipankar Pramanik; Venugopal Chenna; Collins Karikari; Rajni Sharma; Michael Goggins; Michelle A. Rudek; Rajani Ravi; Amarnath Maitra; Anirban Maitra

Curcumin or diferuloylmethane is a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa). A large volume (several hundreds) of published reports has established the anticancer and chemopreventative properties of curcumin in preclinical models of every known major cancer type. Nevertheless, the clinical translation of curcumin has been significantly hampered due to its poor systemic bioavailability, which mandates that patients consume up to 8 to 10 g of the free drug orally each day to achieve detectable levels in circulation. We have engineered a polymeric nanoparticle encapsulated curcumin formulation (NanoCurc) that shows remarkably higher systemic bioavailability in plasma and tissues compared with free curcumin upon parenteral administration. In xenograft models of human pancreatic cancer established in athymic mice, administration of parenteral NanoCurc significantly inhibits primary tumor growth in both subcutaneous and orthotopic settings. The combination of parenteral NanoCurc with gemcitabine results in enhanced tumor growth inhibition versus either single agent, suggesting an additive therapeutic influence in vivo. Furthermore, this combination completely abrogates systemic metastases in orthotopic pancreatic cancer xenograft models. Tumor growth inhibition is accompanied by significant reduction in activation of nuclear factor-κB, as well as significant reduction in expression of matrix metalloproteinase-9 and cyclin D1, in xenografts treated with NanoCurc and gemcitabine. NanoCurc is a promising new formulation that is able to overcome a major impediment for the clinical translation of curcumin to cancer patients by improving systemic bioavailability, and by extension, therapeutic efficacy. Mol Cancer Ther; 9(8); 2255–64. ©2010 AACR.


Gastroenterology | 2015

A Combination of Molecular Markers and Clinical Features Improve the Classification of Pancreatic Cysts

Simeon Springer; Yuxuan Wang; Marco Dal Molin; David L. Masica; Yuchen Jiao; Isaac Kinde; Amanda Blackford; Siva P. Raman; Christopher L. Wolfgang; Tyler Tomita; Noushin Niknafs; Christopher Douville; Janine Ptak; Lisa Dobbyn; Peter J. Allen; David S. Klimstra; Mark A. Schattner; C. Max Schmidt; Michele T. Yip-Schneider; Oscar W. Cummings; Randall E. Brand; Herbert J. Zeh; Aatur D. Singhi; Aldo Scarpa; Roberto Salvia; Giuseppe Malleo; Giuseppe Zamboni; Massimo Falconi; Jin Young Jang; Sun Whe Kim

BACKGROUND & AIMS The management of pancreatic cysts poses challenges to both patients and their physicians. We investigated whether a combination of molecular markers and clinical information could improve the classification of pancreatic cysts and management of patients. METHODS We performed a multi-center, retrospective study of 130 patients with resected pancreatic cystic neoplasms (12 serous cystadenomas, 10 solid pseudopapillary neoplasms, 12 mucinous cystic neoplasms, and 96 intraductal papillary mucinous neoplasms). Cyst fluid was analyzed to identify subtle mutations in genes known to be mutated in pancreatic cysts (BRAF, CDKN2A, CTNNB1, GNAS, KRAS, NRAS, PIK3CA, RNF43, SMAD4, TP53, and VHL); to identify loss of heterozygozity at CDKN2A, RNF43, SMAD4, TP53, and VHL tumor suppressor loci; and to identify aneuploidy. The analyses were performed using specialized technologies for implementing and interpreting massively parallel sequencing data acquisition. An algorithm was used to select markers that could classify cyst type and grade. The accuracy of the molecular markers was compared with that of clinical markers and a combination of molecular and clinical markers. RESULTS We identified molecular markers and clinical features that classified cyst type with 90%-100% sensitivity and 92%-98% specificity. The molecular marker panel correctly identified 67 of the 74 patients who did not require surgery and could, therefore, reduce the number of unnecessary operations by 91%. CONCLUSIONS We identified a panel of molecular markers and clinical features that show promise for the accurate classification of cystic neoplasms of the pancreas and identification of cysts that require surgery.

Collaboration


Dive into the Seung-Mo Hong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph H. Hruban

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Anirban Maitra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noriyuki Omura

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge