Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung-Sik Cho is active.

Publication


Featured researches published by Seung-Sik Cho.


International Journal of Oncology | 2014

Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma

Jung Jae Cho; Jung-Il Chae; Goo Yoon; Ka Hwi Kim; Jin Hyoung Cho; Seung-Sik Cho; Young Sik Cho; Jung-Hyun Shim

Licochalcone A (LCA), a chalconoid derived from root of Glycyrrhiza inflata, has been known to possess a wide range of biological functions such as antitumor, anti-angiogenesis, antiparasitic, anti-oxidant, antibacterial and anti-inflammatory effects. However, the anticancer effects of LCA on oral squamous cell carcinoma (OSCC) have not been reported. Our data showed that LCA inhibited OSCC cell (HN22 and HSC4) growth in a concentration- and time-dependent manner. Mechanistically, it was mediated via downregulation of specificity protein 1 (Sp1) expression and subsequent regulation of Sp1 downstream proteins such as p27, p21, cyclin D1, Mcl-1 and survivin. Here, we found that LCA caused apoptotic cell death in HSC4 and HN22 cells, as characterized by sub-G1 population, nuclear condensation, Annexin V staining, and multi-caspase activity and apoptotic regulatory proteins such as Bax, Bid, Bcl(-xl), caspase-3 and PARP. Consequently, this study strongly suggests that LCA induces apoptotic cell death of OSCC cells via downregulation of Sp1 expression, prompting its potential use for the treatment of human OSCC.


Pharmacognosy Magazine | 2015

Modulation of hepatic cytochrome p450 enzymes by curcumin and its pharmacokinetic consequences in sprague-dawley rats

Sang-Bum Kim; Seung-Sik Cho; Hyun-Jong Cho; In-Soo Yoon

Background: Curcumin (CUR) is a polyphenolic component derived from an herbal remedy and dietary spice turmeric (Curcuma longa). Objective: The aim of this study was to investigate inhibitory effects of CUR on in vitro cytochrome P450 (CYP) activity and in vivo pharmacokinetic consequences of single CUR dose in rats. Materials and Methods: An in vitro CYP inhibition study in rat liver microsomes (RLM) was conducted using probe substrates for CYPs. Then, an in vivo pharmacokinetics of intravenous buspirone (BUS), a probe substrate for CYP3A, was studied with the concurrent administration of oral CUR in rats. Results: In the in vitro CYP inhibition study, CUR inhibited the CYP3A-mediated metabolism of testosterone (TES) with a half maximal inhibitory concentration of 11.0 ± 3.3 μM. However, the impact of a single oral CUR dose on the pharmacokinetics of BUS in rats is limited, showing that CUR cannot function as an inhibitor for CYP3A-mediated drug metabolism in vivo. Conclusion: To the best of our knowledge, our results are the first reported data regarding the inhibition of in vitro CYP3A-mediated metabolism of TES and the in vivo impact of a single CUR dose on the pharmacokinetics of BUS in rats. Further study is required to draw a confirmative conclusion on whether CUR can be a clinically relevant CYP3A4 inhibitor. SUMMARY CUR can inhibit the in vitro CYP3A-mediated metabolism of TES in RLM. However, the impact of a single oral CUR dose on the pharmacokinetics of BUS in rats is limited, showing that CUR cannot function as an inhibitor for CYP3A-mediated drug metabolism in vivo.


Evidence-based Complementary and Alternative Medicine | 2017

In Vitro and In Vivo Studies on Quercus acuta Thunb. (Fagaceae) Extract: Active Constituents, Serum Uric Acid Suppression, and Xanthine Oxidase Inhibitory Activity

In-Soo Yoon; Dae-Hun Park; Min-Suk Bae; Deuk-Sil Oh; Nan-Hui Kwon; Jung-Eun Kim; Chulyung Choi; Seung-Sik Cho

Quercus acuta Thunb. (Fagaceae) (QA) is cultivated as a dietary and ornamental plant in China, Japan, South Korea, and Taiwan. It has been widely used as the main ingredient of acorn tofu, a traditional food in China and South Korea. The aim of this study was to determine in vitro and in vivo xanthine oxidase (XO) inhibitory and antihyperuricemic activities of an ethyl acetate extract of QA leaf (QALE) and identify its active phytochemicals using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC) systems. The QALE was found to possess potent in vitro antioxidant and XO inhibitory activities. In vivo study using hyperuricemic mice induced with potassium oxonate demonstrated that the QALE could inhibit hepatic XO activity at a relatively low oral dose (50 mg/kg) and significantly alleviate hyperuricemia to a similar extent as allopurinol. Several active compounds including vitamin E known to possess XO inhibitory activity were identified from the QALE. To the best of our knowledge, this is the first study that reports the active constituents and antihyperuricemic effect of QA, suggesting that it is feasible to use QALE as a food therapy or alternative medicine for alleviating hyperuricemia and gout.


Journal of Pharmacy and Pharmacology | 2016

Effects of extracts from Corylopsis coreana Uyeki (Hamamelidaceae) flos on xanthine oxidase activity and hyperuricemia

In-Soo Yoon; Dae‐Hun Park; Sung‐Hwan Ki; Seung-Sik Cho

This study aims to investigate xanthine oxidase (XO) inhibitory activity and antihyperuricemic effects of Corylopsis coreana Uyeki flos extracts and the phytochemicals contained therein.


International Journal of Oncology | 2016

Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways.

Ha-Na Oh; Goo Yoon; Jae-Cheon Shin; Seon-Min Park; Seung-Sik Cho; Jin Hyoung Cho; Mee-Hyun Lee; Kangdong Liu; Young Sik Cho; Jung-Il Chae; Jung-Hyun Shim

Licochalcone B (Lico B), which belongs to the retrochalcone family, is isolated from the roots of Chinese licorice. Lico B has been reported to have several other useful pharmacological properties, such as anti-inflammatory, antibacterial, antioxidant, antiulcer, anticancer, and anti-metastasis activities. We elucidated the underlying mechanism by which Lico B can induce apoptosis in oral squamous cell carcinoma (OSCC). Our results showed that exposure of OSCC cells (HN22 and HSC4) to Lico B significantly inhibited cell proliferation in a time- and concentration-dependent manner. Lico B caused cell cycle arrest at G1 phase along with downregulation of cyclin D1 and upregulation of p21 and p27 proteins. Lico B also facilitated the diffusion of phospholipid phosphatidylserine (PS) from inner to outer leaflets of the plasma membrane with chromatin condensation, DNA fragmentation, accumulated sub-G1 population in a concentration-dependent manner. Moreover, Lico B promoted the generation of reactive oxygen species (ROS), which, in turn, can induce CHOP, death receptor (DR) 4 and DR5. Lico B treatment induced downregulation of anti-apoptotic proteins (Bid and Bcl-xl and Mcl-1), and up-regulation of pro-apoptotic protein (Bax). Lico B also led to the loss of mitochondrial membrane potential (MMP), resulting in cytochrome c release. As can be expected from the above results, the apoptotic protease activating factor-1 (Apaf-1) and survivin were oppositely expressed in favor of apoptotic cell death. This notion was supported by the fact that Lico B activated multi-caspases with cleavage of poly (ADP-ribose) polymerase (PARP) protein. Therefore, it is suggested that Lico B is a promising drug for the treatment of human oral cancer via the induction of apoptotic cell death.


International Journal of Oncology | 2015

Manumycin A from a new Streptomyces strain induces endoplasmic reticulum stress-mediated cell death through specificity protein 1 signaling in human oral squamous cell carcinoma

Jung-Jae Cho; Jung-Il Chae; Ka Hwi Kim; Jin Hyoung Cho; Young-Joo Jeon; Ha-Na Oh; Goo Yoon; Yoon do Y; Young-Sik Cho; Seung-Sik Cho; Jung-Hyun Shim

Manumycin A (Manu A) is a natural antibiotic produced by new Streptomyces strain, exhibiting antitumor and anticancer effects. However, the anticancer effects of Manu A on oral squamous cell carcinoma (OSCC) have not been reported. OSCC is an aggressive type of cancer because of its poor prognosis and low survival rate despite advanced medical treatment. We observed that Manu A reduced cell growth and Sp1 protein levels in OSCC cell lines (HN22 and HSC4) in a dose- and time-dependent manner. We also observed downregulation of Sp1 downstream target genes such as p27, p21, Mcl-1 and survivin. Moreover, nuclear staining with DAPI showed that Manu A was able to cause nuclear condensation and further fragmentation. Flow cytometry analyses using Annexin V and propiodium iodide supported Manu A-mediated apoptotic cell death of OSCC cells. Furthermore, Bcl-2 family such as mitochondrial pro‑apoptotic Bax, anti-apoptotic Bcl-xl and Bid were regulated by Manu A, triggering the mitochondrial apoptotic pathway. In conclusion, these results indicate that Manu A is a potential to treat human OSCC via cell apoptosis through the downregulation of Sp1.


Molecules | 2017

Quantitative Analysis, Extraction Optimization, and Biological Evaluation of Cudrania tricuspidata Leaf and Fruit Extracts

Seung-Hui Song; Sung Ki; Dae-Hun Park; Hong-Seop Moon; Chang-Dai Lee; In-Soo Yoon; Seung-Sik Cho

Cudrania tricuspidata Bureau (Moraceae) shows numerous pharmacological effects and has been used in traditional herbal remedies for inflammation, gastritis, tumors, and liver diseases. However, no validated analytical method for the standardization and optimization of the biological properties of C. tricuspidata preparations has been reported. We developed and validated a reverse-phase high-performance liquid chromatography (HPLC) method for the separation and quantification of active markers. Ethanolic extracts of C. tricuspidata leaves were prepared and evaluated for chemical profiles and biological activities. The 80% ethanolic extract demonstrated the greatest antioxidant activity and phenolic content, while the 100% ethanolic extract had the greatest total flavonoid content and xanthine oxidase (XO) inhibitory activity. The validated HPLC method confirmed that chlorogenic acid, rutin, and kaempferol were present in C. tricuspidata leaf extracts. We postulated that the antioxidant and anti-hyperuricemic/gout effects of C. tricuspidata extract could be attributed to these marker compounds. Our results suggested that the flavonoid-rich fraction of the leaf extract may be utilized for the treatment and prevention of hyperuricemia-related diseases, and the validated method and marker compounds could be applied for the quality control of C. tricuspidata preparations.


Molecules | 2018

Analysis of the Active Constituents and Evaluation of the Biological Effects of Quercus acuta Thunb. (Fagaceae) Extracts.

Mi-Hyeon Kim; Dae-Hun Park; Min-Suk Bae; Seung-Hui Song; Hyung-Ju Seo; Dong-Gyun Han; Deuk-Sil Oh; Sung-Tae Jung; Young-Chang Cho; Kyung-Mok Park; Chun-Sik Bae; In-Soo Yoon; Seung-Sik Cho

We evaluated the antioxidant and antibacterial activity of hexnane, ethyl acetate, acetone, methanol, ethanol, and water extracts of the Quercus acuta leaf. The antioxidant properties were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, reducing power, and total phenolic content. Antibacterial activity was assessed against general infectious pathogens, including antibiotic-resistant clinical isolates. The methanolic extract showed the highest DPPH radical scavenging activity and total phenolic content, while the reducing power was the highest in the water extract. The ethyl acetate extract showed the best antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Additionally, it displayed antibacterial activity against Staphylococcus aureus KCTC1928, Micrococcus luteus ATCC 9341, Salmonella typhimurium KCTC 1925, Escherichia coli KCTC 1923, and eight MRSA strains. These results present basic information for the possible uses of the ethanolic and ethyl acetate extracts from Q. acuta leaf in the treatment of diseases that are caused by oxidative imbalance and antibiotic-resistant bacterial infections. Six active compounds, including vitamin E, which are known to possess antioxidant and antibacterial activity, were identified from the extracts. To the best of our knowledge, this is the first study that reports the chemical profiling and antibacterial effects of the various QA leaf extracts, suggesting their potential use in food therapy or alternative medicine.


Molecules | 2018

Development and Validation of a HPLC-UV Method for Extraction Optimization and Biological Evaluation of Hot-Water and Ethanolic Extracts of Dendropanax morbifera Leaves

Hyung-Jae Choi; Dae-Hun Park; Seung-Hui Song; In-Soo Yoon; Seung-Sik Cho

Dendropanax morbifera Leveille (Araliaceae) has been used in traditional oriental remedies for cancer, inflammation, diabetes, and thrombosis. However, a validated analytical method, standardization, and optimization of extraction conditions with respect to biological activity have not been reported. In this study, a simple and validated HPLC method for identifying and quantifying active substances in D. morbifera was developed. Hot water and ethanolic D. morbifera leaf extracts from different production regions were prepared and evaluated with regard to their chemical compositions and biological activities. The contents of active compounds such as rutin and chlorogenic acid were determined in four samples collected from different regions. The 80% ethanolic extract showed the best antioxidant activity, phenolic content, reducing power, and xanthine oxidase (XO) inhibitory activity. The validated HPLC method confirmed the presence of chlorogenic acid and rutin in D. morbifera leaf extracts. The antioxidant and XO inhibitory activity of D. morbifera extract could be attributed to the marker compounds. Collectively, these results suggest that D. morbifera leaves could be beneficial for the treatment or prevention of hyperuricemia-related disease, and the validated HPLC method could be a useful tool for the quality control of food or drug formulations containing D. morbifera.


Journal of Cellular Physiology | 2018

Licochalcone D directly targets JAK2 to induced apoptosis in human oral squamous cell carcinoma: SEO et al.

Ji-Hye Seo; Hyun Woo Choi; Ha-Na Oh; Mee-Hyun Lee; Eunae Kim; Goo Yoon; Seung-Sik Cho; Seon-Min Park; Young Sik Cho; Jung-Il Chae; Jung-Hyun Shim

Licochalcone (LC) families have been reported to have a wide range of biological function such as antioxidant, antibacterial, antiviral, and anticancer effects. Although various beneficial effects of LCD were revealed, its anticancer effect in human oral squamous cancer has not been identified. To examine the signaling pathway of LCD’s anticancer effect, we determined whether LCD has physical interaction with Janus kinase (JAK2)/signal transducer and activator of transcription‐3 (STAT3) signaling, which is critical in promoting cancer cell survival and proliferation. Our results demonstrated that LCD inhibited the kinase activity of JAK2, soft agar colony formation, and the proliferation of HN22 and HSC4 cells. LCD also induced mitochondrial apoptotic events such as altered mitochondrial membrane potential and reactive oxygen species production. LCD increased the expression of apoptosis‐associated proteins in oral squamous cell carcinoma (OSCC) cells. Finally, the xenograft study showed that LCD significantly inhibited HN22 tumor growth. Immunohistochemical data supported that LCD suppressed p‐JAK2 and p‐STAT3 expression and induced cleaved‐caspase‐3 expression. These results indicate that the anticancer effect of LCD is due to the direct targeting of JAK2 kinase. Therefore, LCD can be used for therapeutic application against OSCC.

Collaboration


Dive into the Seung-Sik Cho's collaboration.

Top Co-Authors

Avatar

Goo Yoon

Mokpo National University

View shared research outputs
Top Co-Authors

Avatar

Jung-Hyun Shim

Mokpo National University

View shared research outputs
Top Co-Authors

Avatar

Jung-Il Chae

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ha-Na Oh

Mokpo National University

View shared research outputs
Top Co-Authors

Avatar

In-Soo Yoon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Mee-Hyun Lee

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Jin Hyoung Cho

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji-Hye Seo

Chonbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge