Seung T. Lim
Georgetown University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seung T. Lim.
Pharmacological Research | 2010
Seung T. Lim; Mikko Airavaara; Brandon K. Harvey
The clinical manifestation of most diseases of the central nervous system results from neuronal dysfunction or loss. Diseases such as stroke, epilepsy and neurodegeneration (e.g. Alzheimers disease and Parkinsons disease) share common cellular and molecular mechanisms (e.g. oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction) that contribute to the loss of neuronal function. Neurotrophic factors (NTFs) are secreted proteins that regulate multiple aspects of neuronal development including neuronal maintenance, survival, axonal growth and synaptic plasticity. These properties of NTFs make them likely candidates for preventing neurodegeneration and promoting neuroregeneration. One approach to delivering NTFs to diseased cells is through viral vector-mediated gene delivery. Viral vectors are now routinely used as tools for studying gene function as well as developing gene-based therapies for a variety of diseases. Currently, many clinical trials using viral vectors in the nervous system are underway or completed, and seven of these trials involve NTFs for neurodegeneration. In this review, we discuss viral vector-mediated gene transfer of NTFs to treat neurodegenerative diseases of the central nervous system.
Neuroscience | 2010
Katherine Conant; Yue Wang; Arek Szklarczyk; Amanda Dudak; Mark P. Mattson; Seung T. Lim
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that can be released or activated in a neuronal activity dependent manner. Although pathologically elevated levels of MMPs may be synaptotoxic, physiologically appropriate levels of MMPs may instead enhance synaptic transmission. MMP inhibitors can block long term potentiation (LTP), and at least one family member can affect an increase in the volume of dendritic spines. While the mechanism by which MMPs affect these changes is not completely understood, one possibility is that the cleavage of specific synaptic cell adhesion molecules plays a role. In the present study, we have examined the ability of neuronal activity to stimulate rapid MMP dependent shedding of the intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule that is thought to inhibit the maturation and enlargement of dendritic spines. Since such cleavage would likely occur within minutes if it were relevant to a process such as LTP, we focused on post stimulus time points of 30 min or less. We show that NMDA can stimulate rapid shedding of ICAM-5 from cortical neurons in dissociated cell cultures and that such shedding is diminished by pretreatment of cultures with inhibitors that target MMP-3 and -9, proteases thought to influence synaptic plasticity. Additional studies suggest that MMP mediated cleavage of ICAM-5 occurs at amino acid 780, so that the major portion of the ectodomain is released. Since reductions in ICAM-5 have been linked to changes in dendritic spine morphology that are associated with LTP, we also examined the possibility that MMP dependent ICAM-5 shedding occurs following high frequency tetanic stimulation of murine hippocampal slices. Results show that the shedding of ICAM-5 occurs in association with LTP, and that both LTP and the associated ICAM-5 shedding are reduced when slices are pretreated with an MMP inhibitor. Together, these findings suggest that neuronal activity is linked to the shedding of a molecule that may inhibit dendritic spine enlargement and that MMPs can affect this change. While further studies will be necessary to determine the extent to which cleavage of ICAM-5 in particular contributes to MMP dependent LTP, our data support an emerging body of literature suggesting that MMPs are critical mediators of synaptic plasticity.
Journal of Cell Biology | 2009
Yan Li; Seung T. Lim; David Hoffman; Pontus Aspenstrom; Howard J. Federoff; David A. Rempe
Mitochondrial transport is critical for maintenance of normal neuronal function. Here, we identify a novel mitochondria protein, hypoxia up-regulated mitochondrial movement regulator (HUMMR), which is expressed in neurons and is markedly induced by hypoxia-inducible factor 1 α (HIF-1α). Interestingly, HUMMR interacts with Miro-1 and Miro-2, mitochondrial proteins that are critical for mediating mitochondrial transport. Interestingly, knockdown of HUMMR or HIF-1 function in neurons exposed to hypoxia markedly reduces mitochondrial content in axons. Because mitochondrial transport and distribution are inextricably linked, the impact of reduced HUMMR function on the direction of mitochondrial transport was also explored. Loss of HUMMR function in hypoxia diminished the percentage of motile mitochondria moving in the anterograde direction and enhanced the percentage moving in the retrograde direction. Thus, HUMMR, a novel mitochondrial protein induced by HIF-1 and hypoxia, biases mitochondria transport in the anterograde direction. These findings have broad implications for maintenance of neuronal viability and function during physiological and pathological states.
Journal of Neurochemistry | 2011
Katherine Conant; Irina Lonskaya; Arek Szklarczyk; Caroline Krall; Joseph P. Steiner; Kathleen A. Maguire-Zeiss; Seung T. Lim
J. Neurochem. (2011) 118, 521–532.
Journal of Biological Chemistry | 2010
Jinsook Kim; Christina Lilliehöök; Amanda Dudak; Johannes Prox; Paul Saftig; Howard J. Federoff; Seung T. Lim
Nectin-1 is known to undergo ectodomain shedding by α-secretase and subsequent proteolytic processing by γ-secretase. How secretase-mediated cleavage of nectin-1 is regulated in neuronal cells and how nectin-1 cleavage affects synaptic adhesion is poorly understood. We have investigated α-and γ-secretase-mediated processing of nectin-1 in primary cortical neurons and identified which protease acts as a α-secretase. We report here that NMDA receptor activation, but not stimulation of AMPA or metabotropic glutamate receptors, resulted in robust α- and γ-secretase cleavage of nectin-1 in mature cortical neurons. Cleavage of nectin-1 required influx of Ca2+ through the NMDA receptor, and activation of calmodulin, but was not dependent on calcium/calmodulin-dependent protein kinase II (CaMKII) activation. We found that ADAM10 is the major secretase responsible for nectin-1 ectodomain cleavage in neurons and the brain. These observations suggest that α- and γ-secretase processing of nectin-1 is a Ca2+/calmodulin-regulated event that occurs under conditions of activity-dependent synaptic plasticity and ADAM10 and γ-secretase are responsible for these cleavage events.
PLOS ONE | 2013
Irina Lonskaya; John G. Partridge; Rupa R. Lalchandani; Andrew Chung; Taehee Lee; Stefano Vicini; Hyang Sook Hoe; Seung T. Lim; Katherine Conant
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory.
European Journal of Cell Biology | 2011
Amanda Dudak; Jinsook Kim; Bryan Cheong; Howard J. Federoff; Seung T. Lim
Nectins are cell-cell adhesion molecules involved in the formation of various intercellular junctions and the establishment of apical-basal polarity at cell-cell adhesion sites. To have a better understanding of the roles of nectins in the formation of cell-cell junctions, we searched for new cytoplasmic binding partners for nectin. We report that nectin-1α associates with membrane palmitoylated protein 3 (MPP3), one of the human homologues of a Drosophila tumor suppressor gene, Disc large. Two major forms of MPP3 at 66 and 98 kDa were detected, in conjunction with nectin-1α, suggesting that an association between the two may occur in various cell types. Nectin-1α recruits MPP3 to cell-cell contact sites, mediated by a PDZ-binding motif at the carboxyl terminus of nectin-1α. Association with MPP3 increases cell surface expression of nectin-1α and enhances nectin-1α ectodomain shedding, indicating that MPP3 regulates trafficking and processing of nectin-1α. Further study showed that MPP3 interacts with nectin-3α, but not with nectin-2α, showing that the association of nectins with MPP3 is isoform-specific. MPP5, another MPP family member, interacts with nectins with varying affinity and facilitates surface expression of nectin-1α, nectin-2α, and nectin-3α. These data suggest that wide interactions between nectins and MPP family members may occur in various cell-cell junctions and that these associations may regulate trafficking and processing of nectins.
Journal of Neurochemistry | 2012
Seung T. Lim; Allison Chang; Rita Giuliano; Howard J. Federoff
J. Neurochem. (2012) 120, 741–751.
Frontiers in Cellular Neuroscience | 2015
Katherine Conant; Megan Allen; Seung T. Lim
Spatially localized proteolysis represents an elegant means by which neuronal activity dependent changes in synaptic structure, and thus experience dependent learning and memory, can be achieved. In vitro and in vivo studies suggest that matrix metalloproteinase and adamalysin activity is concentrated at the cell surface, and emerging evidence suggests that increased peri-synaptic expression, release and/or activation of these proteinases occurs with enhanced excitatory neurotransmission. Synaptically expressed cell adhesion molecules (CAMs) could therefore represent important targets for neuronal activity-dependent proteolysis. Several CAM subtypes are expressed at the synapse, and their cleavage can influence the efficacy of synaptic transmission through a variety of non-mutually exclusive mechanisms. In the following review, we discuss mechanisms that regulate neuronal activity-dependent synaptic CAM shedding, including those that may be calcium dependent. We also highlight CAM targets of activity-dependent proteolysis including neuroligin and intercellular adhesion molecule-5 (ICAM-5). We include discussion focused on potential consequences of synaptic CAM shedding, with an emphasis on interactions between soluble CAM cleavage products and specific pre- and post-synaptic receptors.
Journal of Neurochemistry | 2011
Jinsook Kim; Allison Chang; Amanda Dudak; Howard J. Federoff; Seung T. Lim
J. Neurochem. (2011) 119, 945–956.