Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung Taek Ji is active.

Publication


Featured researches published by Seung Taek Ji.


Journal of Neuroscience Research | 2014

Baicalein attenuates astroglial activation in the 1‐methyl‐4‐phenyl‐1,2,3,4‐tetrahydropyridine‐induced Parkinson's disease model by downregulating the activations of nuclear factor‐κB, ERK, and JNK

Eunjin Lee; Hee Ra Park; Seung Taek Ji; Yujeong Lee; Jaewon Lee

In Parkinsons disease (PD), neuroinflammation plays a critical role in the neurodegenerative process. Furthermore, activated microglia and astrocytes, responsible for activated immune response in the central nervous system, are found in regions associated with dopaminergic neuronal death. The flavonoid baicalein is known to have antibacterial, antiviral, and antiinflammatory activities. In the present study, the neuroprotective effects of baicalein were examined in a murine 1‐methyl‐4‐phenyl‐1,2,3,4‐tetrahydropyridine (MPTP) model of PD. Low doses of baicalein improved motor ability and prevented dopaminergic neuron loss caused by MPTP. In addition, microglial and astrocyte activations were reduced in PD mice pretreated with baicalein. Further study of primary astrocytes revealed that baicalein suppressed the 1‐methyl‐4‐phenylpyridine‐induced nuclear translocation of nuclear factor‐κB and reduced the activations of JNK and ERK, suggesting that the neuroprotective effects of baicalein in our PD model were due to attenuated astrocyte activation. The findings of this study indicate that baicalein could be useful for the treatment of PD and other neuroinflammation‐related neurodegenerative diseases.


Stem Cells International | 2017

Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

Seung Taek Ji; Hyunyun Kim; Jisoo Yun; Joo Seop Chung; Sang-Mo Kwon

The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs) are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.


Toxicology Letters | 2013

Diallyl disulfide impairs hippocampal neurogenesis in the young adult brain.

Seung Taek Ji; Min-Sun Kim; Hee Ra Park; Eunjin Lee; Yujeong Lee; Young Jung Jang; Hyung Sik Kim; Jaewon Lee

Garlic and garlic extracts are used as seasonings and are generally considered beneficial to human health, which include antioxidant and neuroprotective properties in neurological disorders. In the present study, we examined the effects of garlic sulfur components on the proliferation of neural progenitor cells (NPCs) and hippocampal neurogenesis. Of the sulfur compounds extracted, diallyl disulfide (DADS) significantly suppressed the proliferation of NPCs, whereas other sulfur containing components had no effect. In order to investigate the effect of DADS on adult hippocampal neurogenesis, DADS was administered orally to young (6 week-old) male C57BL/6 mice for 2 weeks. It was found that 10 mg/kg of DADS significantly decreased the proliferation of NPCs in the dentate gyrus without affecting the survival of newly generated cells. Furthermore, DADS decreased levels of hippocampal BDNF, phosphorylated CREB signaling, and phosphorylated ERKs, which are known to be related to hippocampal neurogenesis and NPCs proliferation. In addition, DADS induced significant memory defects as compared with controls. We report that DADS may have adverse effects on hippocampal neurogenesis and neurocognitive functions by modulating ERK and BDNF-CREB signaling, and suggest that the advisability of consuming large amounts of garlic products should be considered, particularly during the period of neural growth.


Free Radical Research | 2012

The hepatoprotective effects of adenine nucleotide translocator-2 against aging and oxidative stress

Hyun Soo Kim; Jeong Hwan Je; Tae Gen Son; Hee Ra Park; Seung Taek Ji; Yuba Raj Pokharel; Hyun Min Jeon; Keon Wook Kang; Ho Sung Kang; Seung-Cheol Chang; Hyung Sik Kim; Hae Young Chung; Jaewon Lee

Mitochondrial adenine nucleotide translocator (ANT) plays important roles in the regulation of mitochondrial permeability transition and cell bioenergetics. The mouse has three ANT isoforms (1, 2 and 4) showing tissue-specific expression patterns. Although ANT1 is known to have a pro-apoptotic property, the specific functions of ANT2 have not been well determined. In the present study, ANT2 expression was significantly lower in the aged rat liver and in a liver fibrosis model. To explore the protective role of ANT2 in the liver, we established a hepa1c1c7 cell line overexpressing ANT2. Overexpression of ANT2 caused hepa1c1c7 cells to be more resistant to oxidative stress, and mitochondrial membrane potential (MMP, ∆Ψm) was relatively intact in ANT2-overexpressing cells under oxidative stress. In addition, ANT2 was found to increase ATP production by influencing mitochondrial bioenergetics. These results imply that the hepatoprotective effect of ANT2 is due to the stabilization of MMP and enhanced ATP production, and thus, maintaining ANT2 levels in the liver might be important to enhance resistance to aging and oxidative stress.


International Journal of Molecular Sciences | 2016

Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

Jihye Park; Sunghyun Choi; Hyungtae Kim; Seung Taek Ji; Woong Bi Jang; Jae Ho Kim; Sang Hong Baek; Sang Mo Kwon

Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity.


Biomolecules & Therapeutics | 2016

High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

He Yun Choi; Ji Hye Park; Woong Bi Jang; Seung Taek Ji; Seok Yun Jung; Da Yeon Kim; Songhwa Kang; Yeon Ju Kim; Jisoo Yun; Jae Ho Kim; Sang Hong Baek; Sang-Mo Kwon

Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.


The Korean Journal of Physiology and Pharmacology | 2018

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

Da Yeon Kim; Seok Yun Jung; Yeon Ju Kim; Songhwa Kang; Ji Hye Park; Seung Taek Ji; Woong Bi Jang; Shreekrishna Lamichane; Babita Dahal Lamichane; Young Chan Chae; Dongjun Lee; Joo Seop Chung; Sang-Mo Kwon

Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.


Biochemical and Biophysical Research Communications | 2018

Oleuropein attenuates hydrogen peroxide-induced autophagic cell death in human adipose-derived stem cells.

Seung Taek Ji; Yeon-Ju Kim; Seok Yun Jung; Da Yeon Kim; Songhwa Kang; Ji Hye Park; Woong Bi Jang; Jong Seong Ha; Jisoo Yun; Sang-Mo Kwon

Mesenchymal stem cells (MSCs) are multipotent progenitor cells with self-renewing properties; thus, transplanting functionally enhanced MSCs might be a promising strategy for cell therapy against ischemic diseases. However, extensive oxidative damage in ischemic tissue affects the cell fate of transplanted MSCs, eventually resulting in cell damage and autophagic cell death. Oleuropein (OLP) is a bioactive compound isolated from olives and olive oil that harbors antioxidant properties. This study aimed to investigate the potential cytoprotective effects of OLP against oxidative stress and autophagic cell death in MSCs. We found that short-term priming with OLP attenuated H2O2-induced apoptosis by regulating the pro-apoptotic marker Bax and the anti-apoptotic markers Bcl-2 and Mcl-1. Notably, OLP inhibits H2O2 -induced autophagic cell death by modulating autophagy-related death signals, including mTOR (mammalian target of rapamycin), ULK1 (unc-51 like autophagy activating kinase 1), Beclin-1, AMPK (AMP-activated protein kinase), and LC3 (microtubule-associated protein 1a/1b-light chain 3). Our data suggest that OLP might reduce H2O2-induced autophagy and cell apoptosis in MSCs by regulating both the AMPK-ULK axis and the Bcl-2-Mcl-1 axis. Consequently, short-term cell priming with OLP might enhance the therapeutic effect of MSCs against ischemic vascular diseases, which provides an important potential improvement for emerging therapeutic strategies.


Diabetes & Metabolism | 2017

Impaired development and dysfunction of endothelial progenitor cells in type 2 diabetic mice.

S. Tsukada; H. Masuda; Seok-Yun Jung; Jisoo Yun; Songhwa Kang; Da Yeon Kim; Ji Hye Park; Seung Taek Ji; S.-M. Kwon; Takayuki Asahara

AIM Dysfunction of circulating endothelial progenitor cells (EPCs) has been shown to affect the development of microvascular diseases in diabetes patients. The aim of this study was to elucidate the development and mechanical dysfunction of EPCs in type 2 diabetes (T2D). METHODS The colony-forming capacity of EPCs and differentiation potential of bone marrow (BM) c-Kit(+)/Sca-I(+) lineage-negative mononuclear cells (KSL) were examined in T2D mice, db/db mice and KKAy mice, using EPC colony-forming assay (EPC-CFA). RESULTS T2D mice had fewer BM stem/progenitor cells, and proliferation of KSL was lowest in the BM of db/db mice. In T2D mice, the frequency of large colony-forming units (CFUs) derived from BM-KSL was highly reduced, indicating dysfunction of differentiation into mature EPCs. Only a small number of BM-derived progenitors [CD34(+) KSL cells], which contribute to the supply of EPCs for postnatal neovascularization, was also found. Furthermore, in terms of their plasticity to transdifferentiate into various cell types, BM-KSL exhibited a greater potential to differentiate into granulocyte macrophages (GMs) than into other cell types. CONCLUSION T2D affected EPC colony formation and differentiation of stem cells to mature EPCs or haematopoietic cells. These data suggest opposing regulatory mechanisms for differentiation into mature EPCs and GMs in T2D mice.


The Korean Journal of Physiology and Pharmacology | 2016

Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells

Jun Hee Lee; Sang Hun Lee; Hyang Seon Lee; Seung Taek Ji; Seok Yun Jung; Jae Ho Kim; Sun Sik Bae; Sang-Mo Kwon

Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than Lnk–/– MSCs. An ex vivo adipogenic differentiation assay showed that Lnk–/– MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R–Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) and its adipogenic target genes (LPL and FABP4) significantly decreased in Lnk–/– MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the IGF-1/Akt/PPAR-γ pathway.

Collaboration


Dive into the Seung Taek Ji's collaboration.

Top Co-Authors

Avatar

Sang-Mo Kwon

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Woong Bi Jang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Da Yeon Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jisoo Yun

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Seok Yun Jung

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Songhwa Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Yeon Ju Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Ji Hye Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jae Ho Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sang Hong Baek

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge