Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seung Woo Chung is active.

Publication


Featured researches published by Seung Woo Chung.


International Journal of Cancer | 2009

Polyproline‐type helical‐structured low‐molecular weight heparin (LMWH)‐taurocholate conjugate as a new angiogenesis inhibitor

Esak Lee; Yoo-Shin Kim; Sang Mun Bae; Sang Kyoon Kim; Shunji Jin; Seung Woo Chung; Myungjin Lee; Hyun Tae Moon; Ok-Cheol Jeon; Rang Woon Park; In-San Kim; Youngro Byun; Sang Yoon Kim

Although heparin can regulate angiogenesis, tumor growth and metastasis, its clinical application, as well as that of low‐molecular heparin (LMWH), for treating cancer are limited because of heparins anticoagulant activity and risk of hemorrhages. LMWH‐taurocholate conjugates (LHT7), which have low anticoagulant activity, were synthesized. The structural property of LHT was evaluated by circular dichroism and the binding affinity of LHT7 to vascular endothelial growth factor 165 (VEGF165) was measured by isothermal titration calorimetry. The inhibitory effect of LHT7 on VEGF‐mediated KDR (VEGF‐receptor 2) phosphorylation in Human umbilical vein endothelial cells was evaluated. The VEGF165 dependent Matrigel plug assay was performed to verify the antiangiogenic potential of LHT7 on a VEGF165 inhibitor. Finally, tumor growth inhibition effects of LHT7 on SCC7 and the survival rate of animal models were investigated. Moreover, MDA‐MB231 xenograft mouse model was additionally used to confirm the therapeutic effect of LHT7 on human breast cancer cell line. As a result, LHT7 which has 12.7% of anticoagulant activity of the original LMWH showed a peculiar polyproline‐type helical structure. LHT7 binds to VEGF strongly and inhibits VEGF dependent KDR phosphorylation. The results of Matrigel plug assay proved LHT7 as a strong antiangiogenic agent inhibiting VEGF165. Remarkably, LHT7 showed a significant tumor growth inhibition potential on SCC7 with an increased survival rate. LHT7 also delayed tumor growth in MDA‐MB231 human breast cancer cell lines.


Journal of Controlled Release | 2014

Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs.

Gayong Shim; Jiyoung Kim; Jeonghoon Han; Seung Woo Chung; Soondong Lee; Youngro Byun; Yu-Kyoung Oh

Here, we report reduced graphene oxide (rGO) nanosheets coated with an anti-angiogenic anticancer taurocholate derivative of low-molecular-weight heparin (LHT7) as a tumor-targeting nanodelivery platform for anticancer drugs. Surface coating of LHT7 onto rGO was confirmed using fluorescein isothiocyanate-labeled LHT7, monitored as fluorescence quenching due to associated rGO. Unlike plain rGO, LHT7-coated rGO (LHT-rGO) nanosheets maintained a stable dispersion under physiological conditions for at least 24h. Moreover, LHT-rGO provided greater loading capacity for doxorubicin (Dox) compared with uncoated rGO nanosheets. Following intravenous administration into KB tumor-bearing mice, in vivo tumor accumulation of LHT-rGO/Dox was 7-fold higher than that of rGO/Dox 24h post dosing. In tumor tissues, LHT-rGO/Dox was shown to localize not to the tumor vasculature, but rather to tumor cells. Intravenously administered LHT-rGO/Dox showed the greatest anti-tumor effect in KB-bearing mice, reducing tumor volume by 92.5%±3.1% compared to the untreated group 25days after tumor inoculation. TUNEL assays revealed that the population of apoptotic cells was highest in the group treated with LHT-rGO/Dox. Taken together, our results demonstrate that LHT-rGO nanosheets confer improved dispersion stability, tumor distribution and in vivo antitumor effects, and may be further developed as a potential active nanoplatform of various anticancer drugs.


Journal of Controlled Release | 2014

Oligomeric bile acid-mediated oral delivery of low molecular weight heparin

Taslim A. Al-Hilal; Jooho Park; Farzana Alam; Seung Woo Chung; Jin Woo Park; Kwangmeyung Kim; Ick Chan Kwon; In-San Kim; Sang Yoon Kim; Youngro Byun

Intestinal transporters are limited to the transport of small molecular substrates. Here, we describe the development of apical sodium-dependent bile acid transporter (ASBT)-targeted high-affinity oligomeric bile acid substrates that mediate the transmembrane transport of low molecular weight heparin (LMWH). Several oligomers of deoxycholic acid (oligoDOCA) were synthesized to investigate the substrate specificity of ASBT. To see the binding of oligoDOCA on the substrate-binding pocket of ASBT, molecular docking was used and the dissociation rate constants (KD) were measured using surface plasmon resonance. The KD for tetrameric DOCA (tetraDOCA) was 50-fold lower than that for monomeric DOCA, because tetraDOCA interacted with several hydrophobic grooves in the substrate-binding pocket of ASBT. The synthesized oligoDOCA compounds were subsequently chemically conjugated to macromolecular LMWH. In vitro, tetraDOCA-conjugated LMWH (LHe-tetraD) had highest selectivity for ASBT during its transport. Orally administered LHe-tetraD showed remarkable systemic anticoagulation activity and high oral bioavailability of 33.5±3.2% and 19.9±2.5% in rats and monkeys, respectively. Notably, LHe-tetraD successfully prevented thrombosis in a rat model of deep vein thrombosis. These results represent a major advancement in ASBT-mediated LMWH delivery and may facilitate administration of many important therapeutic macromolecules through a non-invasive oral route.


Scientific Reports | 2015

Functional transformations of bile acid transporters induced by high-affinity macromolecules.

Taslim A. Al-Hilal; Seung Woo Chung; Farzana Alam; Jooho Park; Kyung Eun Lee; Hyesung Jeon; Kwangmeyung Kim; Ick Chan Kwon; In-San Kim; Sang Yoon Kim; Youngro Byun

Apical sodium-dependent bile acid transporters (ASBT) are the intestinal transporters that form intermediate complexes with substrates and its conformational change drives the movement of substrates across the cell membrane. However, membrane-based intestinal transporters are confined to the transport of only small molecular substrates. Here, we propose a new strategy that uses high-affinity binding macromolecular substrates to functionally transform the membrane transporters so that they behave like receptors, ultimately allowing the apical-basal transport of bound macromolecules. Bile acid based macromolecular substrates were synthesized and allowed to interact with ASBT. ASBT/macromolecular substrate complexes were rapidly internalized in vesicles, localized in early endosomes, dissociated and escaped the vesicular transport while binding of cytoplasmic ileal bile acid binding proteins cause exocytosis of macromolecules and prevented entry into lysosomes. This newly found transformation process of ASBT suggests a new transport mechanism that could aid in further utilization of ASBT to mediate oral macromolecular drug delivery.


Biomaterials | 2014

Oral delivery of a potent anti-angiogenic heparin conjugate by chemical conjugation and physical complexation using deoxycholic acid

Farzana Alam; Taslim A. Al-Hilal; Seung Woo Chung; Dong-Hyun Seo; Foyez Mahmud; Han Sung Kim; Sang Yoon Kim; Youngro Byun

Angiogenesis, the formation of new blood vessels, plays a pivotal role in tumor progression and for this reason angiogenesis inhibitors are an important class of therapeutics for cancer treatment. Heparin-based angiogenesis inhibitors have been newly developed as one of such classes of therapeutics and possess a great promise in the clinical context. Taurocholate conjugated low molecular weight heparin derivative (LHT7) has been proven to be a potent, multi-targeting angiogenesis inhibitor against broad-spectrum angiogenic tumors. However, major limitations of LHT7 are its poor oral bioavailability, short half-life, and frequent parenteral dosing schedule. Addressing these issues, we have developed an oral formulation of LHT7 by chemically conjugating LHT7 with a tetrameric deoxycholic acid named LHTD4, and then physically complexing it with deoxycholylethylamine (DCK). The resulting LHTD4/DCK complex showed significantly enhanced oral bioavailability (34.3 ± 2.89%) and prolonged the mean residence time (7.5 ± 0.5 h). The LHTD4/DCK complex was mostly absorbed in the intestine by transcellular pathway via its interaction with apical sodium bile acid transporter. In vitro, the VEGF-induced sprouting of endothelial spheroids was significantly blocked by LHTD4. LHTD4/DCK complex significantly regressed the total vessel fractions of tumor (77.2 ± 3.9%), as analyzed by X-ray microCT angiography, thereby inhibiting tumor growth in vivo. Using the oral route of administration, we showed that LHTD4/DCK complex could be effective and chronically administered as angiogenesis inhibitor.


Biomaterials | 2012

Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex

Jiyoung Kim; Gayong Shim; Hyun Woo Choi; Jooho Park; Seung Woo Chung; Sunil Kim; Kwangmeyung Kim; Ick Chan Kwon; Chan Wha Kim; Sang Yoon Kim; Victor C. Yang; Yu-Kyoung Oh; Youngro Byun

The chemical conjugate of low molecular weight heparin with taurocholate (LHT7) was previously designed to offer anticancer activity while minimizing the anticoagulant activity. In the present study, we found that the systemic administration of LHT7 in nanolipoplex could substantially enhance tumor vasculature targeting and anticancer effects. Moreover, we found that co-delivery of LHT7 with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, in nanolipoplex could provide synergistic antitumor effect. LHT7/SAHA nanolipoplex was formulated by encapsulating SAHA inside cationic liposomes, followed by complexation of negatively charged LHT7 onto the cationic surfaces of SAHA-loaded liposomes (SAHA-L). LHT7/SAHA nanolipoplex was positively charged with a mean diameter of 117.6 nm, and stable in serum. The nanolipoplex form of LHT7 could alter its pharmacokinetics and biodistribution. Compared to the free form of LHT7, LHT7 in the nanolipoplex showed 1.9-fold higher mean residence time, and higher tumor vasculature accumulation after its intravenous administration. LHT7/SAHA nanolipoplex showed highest antitumor efficacy in SCC-bearing mice, compared to LHT7, SAHA-L and sequential co-administration of LHT7 and SAHA-L. Consistent with the enhanced antitumor effect, the reduction of abnormal vessels in the tumor site was also the highest in the LHT7/SAHA nanolipoplex-treated group. These results suggested the potential of LHT7/SAHA nanolipoplex for enhanced tumor vasculature targeting, and the importance of nanolipoplex-mediated co-delivery with a histone deacetylase inhibitor for maximal anticancer effect.


Journal of Drug Targeting | 2012

Strategies for non-invasive delivery of biologics

Seung Woo Chung; Taslim A. Hil-lal; Youngro Byun

Macromolecular therapeutics, in particular, many biologics, is the most advancing category of drugs over conventional chemical drugs. The potency and specificity of the biologics for curing certain disease made them to be a leading compound in the pharmaceutical industry. However, due to their intrinsic nature, including high molecular weight, hydrophilicity and instability, they are difficult to be administered via non-invasive route. This is a major quest especially in biologics, as they are frequently used clinically for chronic disorders, which requires long-term administration. Therefore, many efforts have been made to develop formulation for non-invasive administration, in attempt to improve patient compliance and convenience. In this review, strategies for non-invasive delivery, in particular, oral, pulmonary and nasal delivery, that are recently adopted for delivery of biologics are discussed. Insulin, calcitonin and heparin were mainly focused for the discussion as they could represent protein, polypeptide and polysaccharide drugs, respectively. Many recent attempts for non-invasive delivery of biologics are compared to provide an insight of developing successful delivery system.


Biomaterials | 2015

LHT7, a chemically modified heparin, inhibits multiple stages of angiogenesis by blocking VEGF, FGF2 and PDGF-B signaling pathways.

Seung Woo Chung; Sang Mun Bae; Myungjin Lee; Taslim A. Al-Hilal; Chang Kyung Lee; Jeong Kon Kim; In-San Kim; Sang Yoon Kim; Youngro Byun

Despite the therapeutic benefits of the angiogenesis inhibitors shown in the clinics, they have encountered an unexpected limitation by the occurrence of acquired resistance. Although the mechanism of the resistance is not clear so far, the upregulation of alternative angiogenic pathways and stabilization of endothelium by mural cells were reported to be responsible. Therefore, blocking multiple angiogenic pathways that are crucial in tumor angiogenesis has been highlighted to overcome such limitations. To develop an angiogenesis inhibitor that could block multiple angiogenic factors, heparin is an excellent lead compound since wide array of angiogenic factors are heparin-binding proteins. In previous study, we reported a heparin-derived angiogenesis inhibitor, LHT7, as a potent angiogenesis inhibitor and showed that it blocked VEGF signaling pathway. Here we show that LHT7 could block the fibroblast growth factor 2 (FGF2) and platelet-derived growth factor B (PDGF-B) in addition to VEGF. Simultaneous blockade of these angiogenic factors resulted in inhibition of multiple stages of the angiogenic process, including initial angiogenic response to maturation of the endothelium by pericyte coverage in vitro. In addition, the treatment of LHT7 in vivo did not show any sign of vascular normalization and directly led to decreased blood perfusion throughout the tumor. Our findings show that LHT7 could effectively inhibit tumor angiogenesis by blocking multiple stages of the angiogenesis, and could potentially be used to overcome the resistance.


Journal of Controlled Release | 2015

Antiangiogenic and anticancer effect of an orally active low molecular weight heparin conjugates and its application to lung cancer chemoprevention.

Jiyoung Kim; Taslim A. Al-Hilal; Seung Woo Chung; Sang Yoon Kim; Gyu Ha Ryu; Woo Chan Son; Youngro Byun

Angiogenesis is well recognized as a pivotal process in tumor progression from the very early premalignant stages, thus making it an important target in cancer chemoprevention as well as in cancer treatment. In the present study, we introduce a recently developed oral heparin conjugate (LHTD4) for use as an inhibitor of angiogenesis and evaluate its therapeutic and preventive effects in two different animal models of lung cancer. The antiangiogenic activities of LHTD4 were evaluated using tube formation and Matrigel plug assays. VEGF- and bFGF-induced tube formations were reduced up to 77.2 and 67.3%, respectively, by LHTD4. Hemoglobin content was also significantly decreased by LHTD4 in the Matrigel plugs that were transplanted into mice. We observed that the VEGF- and bFGF-mediated phosphorylations of the receptors, VEGFR-2 and FGFR-1, were also inhibited by LHTD4. The in vivo antiangiogenic and anticancer effects of LHTD4 that developed following oral administration were verified in a tumor xenograft model of human A549 lung cancer cells: tumor volume was found to have decreased by 60.2% and the expressions of CD34 and Ki-67 in the LHTD4-treated group were affected. Finally, in a chemically induced lung carcinogenesis model, the number and area of each nodule were significantly reduced in the LHTD4-treated groups by 49.2% and 30.1%, respectively. In addition, the degree of angiogenesis in the lung tissue itself was decreased in the drug treatment group by 52.9%. Taken together, these results suggest that LHTD4 could be a promising candidate for angiogenesis inhibitor for the treatment and prevention of cancer.


Biomaterials | 2012

Potentiation of anti-angiogenic activity of heparin by blocking the ATIII-interacting pentasaccharide unit and increasing net anionic charge.

Seung Woo Chung; Myungjin Lee; Sang Mun Bae; Jooho Park; Ok Cheol Jeon; Hui Sun Lee; Han Choe; Han Sung Kim; Beom Suk Lee; Rang-Woon Park; Sang Yoon Kim; Youngro Byun

Heparin, a potent anticoagulant used for the prevention of venous thromboembolism, has been recognized as a tumor angiogenesis inhibitor. Its limitation in clinical application for cancer therapy, however, arises from its strong anticoagulant activity, which causes associated adverse effects. In this study, we show the structural correlation of LHT7, a previously developed heparin-based angiogenesis inhibitor, with its influence on VEGF blockade and its decreased anticoagulant activity. LHT7 was characterized as having average seven molecules of sodium taurocholates conjugated to one molecule of low-molecular-weight heparin (LMWH). This study showed that the conjugation of sodium taurocholates selectively blocked interaction with antithrombin III (ATIII) while enhancing the binding with VEGF. This resulted in LHT7 to have negligible anticoagulant activity but potent anti-angiogenic activity. Following up on this finding, we showed that the bidirectional effect of sodium taurocholate conjugation was due to its unique structure, that is, the sterane core hindering the ATIII-binding pentasaccharide unit of LMWH with its bulky and rigid structural characteristics while the terminal sulfate group interacts with VEGF to produce stronger binding. In addition, we showed that LHT7 was localized in the tumor, especially on the endothelial cells. One explanation for this might be that LHT7 was delivered to the tumor via platelets.

Collaboration


Dive into the Seung Woo Chung's collaboration.

Top Co-Authors

Avatar

Youngro Byun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farzana Alam

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jooho Park

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeong Uk Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jiyoung Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngro Byun

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge