Seungmin Na
Korea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seungmin Na.
Japanese Journal of Applied Physics | 2007
Seungmin Na; Yongwoon Park; Anna Hwang; Jeong Sook Ha; Younguk Kim; Jeehyeong Khim
The use of ultrasound as an enhancement mechanism in the surfactant-aided soil-washing process was examined by conducting desoption tests of soils contaminated with naphthalene or diesel-oil. The experiments were conducted to elucidate the effect of ultrasound on the mass transfer from soil to the aqueous phase using naphthalene-contaminated soil. In addition, the use of ultrasound for the diesel-oil-contaminated soil was investigated under a range of conditions of surfactant concentration, sonication power, duration, soil/liquid ratio, particle size and initial diesel-oil concentration. The ultrasound used in the soil-washing process significantly enhanced the mass transfer rate from the solid phase to the aqueous phase. The removal efficiency of diesel-oil from the soil phase generally increased with longer sonication time, higher power intensity, and large particle size.
Ultrasonics Sonochemistry | 2012
Seungmin Na; Cai Jinhua; Mingcan Cui; Jeehyeong Khim
This study investigated the degradation of diethyl phthalate (DEP) by sonolytic, photolytic and sonophotolytic processes. Two types of UV lamps, UVC (254 nm) and VUV (185 nm+254 nm), were combined with ultrasound (283 kHz). The pseudo-first order degradation rate constants were in the order of 10(-1)-10(-3) min(-1) depending on the processes. The sonolytic DEP degradation rate increased with increasing applied power. Photolytic or sonophotolytic degradation of DEP when using a VUV lamp appeared to be effective because the photo ІІ (UVC/VUV) resulted in a significantly faster degradation than the photo І (UVC) processes due to the higher photon energy and higher hydroxyl radical generation by homolysis of water by VUV. Significant degradation and mineralization (TOC) of DEP were observed with the combined sonophotolytic processes. Moreover, synergistic effects of 1.68 and 1.23 were exhibited at DEP degradation of the sonophoto I and sonophoto II processes, respectively. This was attributed to the UV-induced dissociation of hydrogen peroxide (H(2)O(2)) generated by the application of US to hydroxyl radicals. Therefore, US in sonophotolytic processes can play an important role in enhancing DEP degradation. Moreover, the sonophoto ІІ process is more effective on the mineralization and biodegradability of DEP.
Chemosphere | 2013
Dong-Hoon Shin; Min Jang; Mingcan Cui; Seungmin Na; Jeehyeong Khim
In this study, the photocatalytic ozonation process using either UV lamps with a wavelength close to a solar wavelength (UVsolar) or natural solar light was established to study the effects of the major operating parameters on the removal of a toxic disinfection by-product (DBP), dichloroacetonitrile (DCAN), from drinking water. Based on the test results of a bench system, the UVsolar/TiO2/O3 process had the highest DCAN-removal rate among the advanced oxidation processes (AOPs). The optimal TiO2 and ozone doses were 1gL(-1) and 1.13gL(-1)h(-1), respectively, while room temperature (20°C) produced the highest rate constant in the kinetic tests. The kinetic rate constants linearly increased when the UVsolar intensity increased in the range 4.6-25Wm(-2); however, it increased less at intensities higher than 25Wm(-2). The test results of the outdoor system showed that the solar/TiO2/O3 process provided complete removal of DCAN that was two times faster and had about 4.6 times higher energy efficiency than with solar/TiO2. As a green oxidation technique, solar photocatalytic ozonation could be a good alternative for treating recalcitrant and toxic organic pollutants, because it has high oxidation potential and low energy consumption compared to conventional AOPs.
Japanese Journal of Applied Physics | 2011
Anna Hwang; Seungmin Na; Jeong Sook Ha; Jeehyeong Khim
The first-order rate constants of diethyl phthalate (DEP) degradation by sonochemical, Fenton and sono-Fenton processes were compared, and the synergistic effect of the combined sono-Fenton process and the dependence of the degradation rate on the power density (80, 180, and 330 W L-1) were investigated. The rate constants for the individual sonochemical and Fenton processes were 10-3 to 10-2 and 1.02 ×10-2 min-1, respectively. The synergy from the combined process increased significantly as the applied power density increased, and it was 1.97 with the input of ultrasonic energy of 330 W L-1. This increase was attributed to the higher efficiency of hydroxyl radical production from several pathways. The relationship between the degradation rate constant and power density was linear because the cavitation rate increased with increasing power level of the applied ultrasound.
Japanese Journal of Applied Physics | 2010
Mingcan Cui; Younggyu Son; Myunghee Lim; Seungmin Na; Jeehyeong Khim
A direct ultrasonic (US) and ozone (O3) combination (US/O3) process for the removal of two hormones, estrone (E1) and estriol (E3), in aqueous solutions was investigated. These two hormones were detected in a wastewater treatment plant effluent in Korea. It was found that the ultrasonic/ozone process showed a higher removal performance than the US and O3 process even though the O3 process also showed approximately the same removal efficiency after 60 min. Chemical oxygen demand/total organic carbon (CODcr/TOC) ratios for E1 and E3 decreased, indicating that biodegradability could be increased significantly in the US/O3 process. The optimal pH condition was determined above the neutral pH condition.
Journal of Wetlands Research | 2016
Seungmin Na; Heongak Kwon; Sang Min Shin; Younggyu Son; Dongseok Shin; Tae Hyo Im
This study has performed comparative analysis on characteristics of contaminated 35 tributaries on seasonal variation/point discharge load/pollutant distribution of water quality factors(8) in order to understand the effect of the watershed in Nakdong River Basin. As a results, the water quality of BOD5(Biochemical Oxygen Demand), Chl-a(Chlorophyll a) and Fecal E. Coli shows II grade at tributaries of more than 50% without COD(Chemical Oxygen Demand), TP(Total Phosphate), TOC(Total Oxygen Carbon) and TN(Total Nitrogen) factors. The specific discharge(Q) were occupied about 54.4% (19 sites) as 0.05 m/sec/km value. Among these results, the contaminant level of Dalseocheon, Hyeonjicheon, Seokkyocheon 1, Uriyeongcheon and Dasancheon was also high, which has to consider a discharged pollutant load(kg/day). The 35 major tributaries of Nakdong River were included in 7 mid-watershed, such as Nakdong Waegwan, Geumho River, Nakdong Goryung, Nakdong Changnyung, Nam River, Nakdong Milyang, Nakdong River Hagueon. Especially, the discharged pollutant load of Nam River and Geumho River also was high according to the amount of discharge such as Kachang dam, Gongsan dam and Nam river dam. Seasonal difference of the water quality factors such as BOD5, TN, SS and Q was observed largely, on the other hand 나승민・권헌각・신상민・손영규・신동석・임태효 한국습지학회 제18권 제3호, 2016 302
Japanese Journal of Applied Physics | 2012
Eunju Cho; Beomguk Park; Seungmin Na; Jeehyeong Khim
Few studies using high frequencies have been carried out on the sono-TiO2 process, and consistent results based on the specific experimental conditions have not been reported thus far. Therefore, in the present work the effects of power density and dose on the kinetic constant of diethyl phthalate at 500 and 35 kHz using TiO2 have been evaluated. The slopes of kinetic constants depending on the power density regardless of TiO2 were increased and they were shown to be linear. However, the enhancement percentage according to the frequencies at 500 kHz was lower than that at 35 kHz, though clear discussions on the enhancement in the presence of TiO2 have not yet been produced. Also, the optimal dose was 1 g/L, which was not changed according to the frequency.
Journal of Environmental Sciences-china | 2011
Seungmin Na; Yun-Gyong Ahn; Mingcan Cui; Sang-Hyun Cho; Jeehyeong Khim
Abstract Diethyl phthalate (DEP) and nonylphenol (NP) are widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including TiO 2 , as advanced oxidation processes (AOPs) were applied to a DEP and NP contaminated solution. When only the application of US, the optimum frequency for significant DEP degradation and a high rate of hydrogen peroxide (H 2 O 2 ) formation was 283 kHz. We know that the main mechanism of DEP degradation is radical reaction and, NP can be affected by both of radical reaction and pyrolysis through only US (sonolysis) process and combined US+UVC (sonophotolysis) process. At combined AOPs (sonophotolysis/sonophotocatalysis) such as US+UVC and US+UVC+TiO 2 , significant degradation of DEP and NP were observed. Enhancement effect of sonophotolysis and sonophotocatalysis system of DEP and NP were 1.68/1.38 and 0.99/1.17, respectively. From these results, combined sonophotocatalytic process could be more efficient system to obtain a significant DEP and NP degradation.
Japanese Journal of Applied Physics | 2006
Young Uk Kim; Junsoo Ha; Geonha Kim; Seungmin Na
Various research studies have been undertaken in an effort to enhance the filterability of drainage material for soil improvement in land reclamation work. The principal concern with existing drainage strategies is that their effectiveness decreases significantly with time, due to clogging of the soil. In this study, we investigated the enhancement of drain filterability with the application of ultrasound. Specially designed and fabricated equipment was used to apply ultrasonic energy to the soil samples during experimentation. The results showed that the application of ultrasonic energy significantly increased the filterability of the soil samples. Thus, these results advocate the use of ultrasound for enhanced drainage filterability.
Journal of Environmental Sciences-china | 2012
Seungmin Na; Jinhua Cai; Dong-Hoon Shin; Mingcan Cui; Jeehyeong Khim
Abstract Diethyl phthalate (DEP) is widely spread in the natural environment as an endocrine disruption chemicals (EDs). Therefore, in this study, ultrasound (US) and ultraviolet (UVC), including various applied power density (10-40 W/L), UV wavelengths (365 nm, 254 nm and 185 nm) and frequencies (283 kHz, 935 kHz) were applied to a DEP contaminated solution. The pseudo-first order degradation rate constants were in the order of 10 -1 to 10 -4 min -1 depending on the processes. Photolytic and sonophotolytic DEP degradation rate also were high at shortest UV wavelength (VUV) due to the higher energy of photons, higher molar absorption coefficient of DEP and increased hydroxyl radical generation from homolysis of water. Sonolytic DEP degradation rate increased with increase of applied input power and the dominant reaction mechanism of DEP in sonolysis was estimated as hydroxyl radical reaction by the addition of t-BuOH, which is a common hydroxyl radical scavenger. Moreover, synergistic effect of were also observed for sonophotolytic degradation with various UV irradiation.