Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Séverine Balmand is active.

Publication


Featured researches published by Séverine Balmand.


Science | 2016

Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition

Martin Schwarzer; Kassem Makki; Gilles Storelli; Irma Machuca-Gayet; Dagmar Srutkova; Petra Hermanova; Maria Elena Martino; Séverine Balmand; Tomas Hudcovic; Abdelaziz Heddi; Jennifer Rieusset; Hana Kozakova; Hubert Vidal; François Leulier

Microbiota and infant development Malnutrition in children is a persistent challenge that is not always remedied by improvements in nutrition. This is because a characteristic community of gut microbes seems to mediate some of the pathology. Human gut microbes can be transplanted effectively into germ-free mice to recapitulate their associated phenotypes. Using this model, Blanton et al. found that the microbiota of healthy children relieved the harmful effects on growth caused by the microbiota of malnourished children. In infant mammals, chronic undernutrition results in growth hormone resistance and stunting. In mice, Schwarzer et al. showed that strains of Lactobacillus plantarum in the gut microbiota sustained growth hormone activity via signaling pathways in the liver, thus overcoming growth hormone resistance. Together these studies reveal that specific beneficial microbes could potentially be exploited to resolve undernutrition syndromes. Science, this issue p. 10.1126/science.aad3311, p. 854 The gut microbiota supports the growth of juvenile mice via growth hormone signaling. In most animal species, juvenile growth is marked by an exponential gain in body weight and size. Here we show that the microbiota of infant mice sustains both weight gain and longitudinal growth when mice are fed a standard laboratory mouse diet or a nutritionally depleted diet. We found that the intestinal microbiota interacts with the somatotropic hormone axis to drive systemic growth. Using monocolonized mouse models, we showed that selected lactobacilli promoted juvenile growth in a strain-dependent manner that recapitulated the microbiotas effect on growth and the somatotropic axis. These findings show that the hosts microbiota supports juvenile growth. Moreover, we discovered that lactobacilli strains buffered the adverse effects of chronic undernutrition on the postnatal growth of germ-free mice.


Molecular Biology and Evolution | 2008

Long-Term Evolutionary Stability of Bacterial Endosymbiosis in Curculionoidea: Additional Evidence of Symbiont Replacement in the Dryophthoridae Family

Cyrille Conord; Laurence Després; Agnès Vallier; Séverine Balmand; Christian Miquel; Stéphanie Zundel; Guy Lemperiere; Abdelaziz Heddi

Bacterial intracellular symbiosis (endosymbiosis) is well documented in the insect world where it is believed to play a crucial role in adaptation and evolution. However, although Coleopteran insects are of huge ecological and economical interest, endosymbiont molecular analysis is limited to the Dryophthoridae family. Here, we have analyzed the intracellular symbiotic bacteria in 2 Hylobius species belonging to the Molytinae subfamily (Curculionoidea superfamily) that exhibit different features from the Dryophthoridae insects in terms of their ecology and geographical spanning. Fluorescence in situ hybridization has shown that both Hylobius species harbor rod-shaped pleiomorphic symbiotic bacteria in the oocyte and in the bacteria-bearing organ (the bacteriome), with a shape and location similar to those of the Dryophthoridae bacteriome. Phylogenetic analysis of the 16S ribosomal DNA gene sequences, using the heterogeneous model of DNA evolution, has placed the Hylobius spp. endosymbionts (H-group) at the basal position of the ancestral R-clade of Dryophthoridae endosymbionts named Candidatus Nardonella but relatively distant from the S-clade of Sitophilus spp. endosymbionts. Endosymbionts from the H-group and the R-clade evolved more quickly compared with free-living enteric bacteria and endosymbionts from the S- and D-clades of Dryophthoridae. They are AT biased (58.3% A + T), and they exhibit AT-rich insertions at the same position as previously described in the Candidatus Nardonella 16S rDNA sequence. Moreover, the host phylogenetic tree based on the mitochondrial COI gene was shown to be highly congruent with the H-group and the R-clade, the divergence of which was estimated to be around 125 MYA. These new molecular data show that endosymbiosis is old in Curculionids, going back at least to the common ancestor of Molytinae and Dryophthoridae, and is evolutionary stable, except in 2 Dryophthoridae clades, providing additional and independent supplementary evidence for endosymbiont replacement in these taxa.


PLOS Pathogens | 2011

Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans.

Uzma Alam; Jan Medlock; Corey L. Brelsfoard; Roshan Pais; Claudia Lohs; Séverine Balmand; Jozef Carnogursky; Abdelaziz Heddi; Peter Takac; Alison P. Galvani; Serap Aksoy

Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (GmmApo) females when mated with Wolbachia-infected (GmmWt) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used successfully as a gene driver. This lays the foundation for new disease control methods including a population replacement approach with parasite resistant flies. Alternatively, the availability of males that are reproductively incompatible with natural populations can enhance the efficacy of the ongoing sterile insect technique (SIT) applications by eliminating the need for chemical irradiation.


Applied and Environmental Microbiology | 2006

Host PGRP Gene Expression and Bacterial Release in Endosymbiosis of the Weevil Sitophilus zeamais

Caroline Anselme; Agnès Vallier; Séverine Balmand; Marie-Odile Fauvarque; Abdelaziz Heddi

ABSTRACT Intracellular symbiosis (endosymbiosis) with gram-negative bacteria is common in insects, yet little is known about how the host immune system perceives the endosymbionts and controls their growth and invasion without complete bacterial clearance. In this study, we have explored the expression of a peptidoglycan recognition protein gene of the weevil Sitophilus zeamais (wPGRP); an ortholog in Drosophila (i.e., PGRP-LB) was recently shown to downregulate the Imd pathway (A. Zaidman-Remy, M. Herve, M. Poidevin, S. Pili-Floury, M. S. Kim, D. Blanot, B. H. Oh, R. Ueda, D. Mengin-Lecreulx, and B. Lemaitre, Immunity 24:463-473, 2006). Insect challenges with bacteria have demonstrated that wPGRP is induced by gram-negative bacteria and that the level of induction depends on bacterial growth. Real-time reverse transcription-PCR quantification of the wPGRP gene transcript performed at different points in insect development has shown a high steady-state level in the bacteria-bearing organ (the bacteriome) of larvae and a high level of wPGRP up-regulation in the symbiotic nymphal phase. Concomitantly, during this stage fluorescence in situ hybridization has revealed an endosymbiont release from the host bacteriocytes. Together with the previously described high induction level of endosymbiont virulence genes at the nymphal phase (C. Dale, G. R. Plague, B. Wang, H. Ochman, and N. A. Moran, Proc. Natl. Acad. Sci. USA 99:12397-12402, 2002), these findings indicate that insect mutualistic relationships evolve through an interplay between bacterial virulence and host immune defense and that the host immunity engages the PGRP gene family in that interplay.


Journal of Invertebrate Pathology | 2013

Tissue distribution and transmission routes for the Tsetse fly endosymbionts

Séverine Balmand; Claudia Lohs; Serap Aksoy; Abdelaziz Heddi

The tsetse fly Glossina is the vector of the protozoan Trypanosoma brucei spp., which causes Human and Animal African Trypanosomiasis in sub-Saharan African countries. To supplement their unbalanced vertebrate bloodmeal diet, flies permanently harbor the obligate bacterium Wigglesworthia glossinidia, which resides in bacteriocytes in the midgut bacteriome organ as well as in milk gland organ. Tsetse flies also harbor the secondary facultative endosymbionts (S-symbiont) Sodalis glossinidius that infects various tissues and Wolbachia that infects germ cells. Tsetse flies display viviparous reproductive biology where a single embryo hatches and completes its entire larval development in utero and receives nourishments in the form of milk secreted by mothers accessory glands (milk glands). To analyze the precise tissue distribution of the three endosymbiotic bacteria and to infer the way by which each symbiotic partner is transmitted from parent to progeny, we conducted a Fluorescence In situ Hybridization (FISH) study to survey bacterial spatial distribution across the fly tissues. We show that bacteriocytes are mono-infected with Wigglesworthia, while both Wigglesworthia and Sodalis are present in the milk gland lumen. Sodalis was further seen in the uterus, spermathecae, fat body, milk and intracellular in the milk gland cells. Contrary to Wigglesworthia and Sodalis, Wolbachia were the only bacteria infecting oocytes, trophocytes, and embryos at early embryonic stages. Furthermore, Wolbachia were not seen in the milk gland and in the fat body. This work further highlights the diversity of symbiont interactions in multipartner associations and supports two maternal routes of symbiont inheritance in the tsetse fly: Wolbachia through oocytes, and, Wigglesworthia and Sodalis by means of milk gland bacterial infection at early post-embryonic stages.


Current Biology | 2014

Insects Recycle Endosymbionts when the Benefit Is Over

Aurélien Vigneron; Florent Masson; Agnès Vallier; Séverine Balmand; Marjolaine Rey; Carole Vincent-Monégat; Emre Aksoy; Etienne Aubailly-Giraud; Anna Zaidman-Rémy; Abdelaziz Heddi

Symbiotic associations are widespread in nature and represent a driving force in evolution. They are known to impact fitness, and thereby shape the host phenotype. Insects subsisting on nutritionally poor substrates have evolved mutualistic relationships with intracellular symbiotic bacteria (endosymbionts) that supply them with metabolic components lacking in their diet. In many species, endosymbionts are hosted within specialized host cells, called the bacteriocytes, and transmitted vertically across host generations. How hosts balance the costs and benefits of having endosymbionts, and whether and how they adjust symbiont load to their physiological needs, remains largely unexplored. By investigating the cereal weevil Sitophilus association with the Sodalis pierantonius endosymbiont, we discover that endosymbiont populations intensively multiply in young adults, before being rapidly eliminated within few days. We show that young adults strongly depend on endosymbionts and that endosymbiont proliferation after metamorphosis matches a drastic host physiological need for the tyrosine (Tyr) and phenylalanine (Phe) amino acids to rapidly build their protective exoskeleton. Tyr and Phe are precursors of the dihydroxyphenylalanine (DOPA) molecule that is an essential component for the cuticle synthesis. Once the cuticle is achieved, DOPA reaches high amounts in insects, which triggers endosymbiont elimination. This elimination relies on apoptosis and autophagy activation, allowing digestion and recycling of the endosymbiont material. Thus, the weevil-endosymbiont association reveals an adaptive interplay between metabolic and cellular functions that minimizes the cost of symbiosis and speeds up the exoskeleton formation during a critical phase when emerging adults are especially vulnerable.


Insect Biochemistry and Molecular Biology | 2014

New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments

Panagiotis Sapountzis; Gabrielle Duport; Séverine Balmand; Karen Gaget; Stéphanie Jaubert-Possamai; Gérard Febvay; Hubert Charles; Yvan Rahbé; Stefano Colella; Federica Calevro

RNA interference (RNAi) has been widely and successfully used for gene inactivation in insects, including aphids, where dsRNA administration can be performed either by feeding or microinjection. However, several aspects related to the aphid response to RNAi, as well as the influence of the administration method on tissue response, or the mixed success to observe phenotypes specific to the gene targeted, are still unclear in this insect group. In the present study, we made the first direct comparison of two administration methods (injection or feeding) for delivery of dsRNA targeting the cathepsin-L gene in the pea aphid, Acyrthosiphon pisum. In order to maximize the possibility of discovering specific phenotypes, the effect of the treatment was analyzed in single individual aphids at the level of five body compartments: the bacteriocytes, the gut, the embryonic chains, the head and the remaining body carcass. Our analysis revealed that gene expression knockdown effect in each single body compartment was dependent on the administration method used, and allowed us to discover new functions for the cathepsin-L gene in aphids. Injection of cathepsin-L dsRNA was much more effective on carcass and head, inducing body morphology alterations, and suggesting a novel role of this gene in the molting of these insects. Administration by feeding provoked cathepsin-L knockdown in the gut and specific gut epithelial cell alteration, therefore allowing a better characterization of tissue specific role of this gene in aphids.


PLOS ONE | 2011

A Genomic Reappraisal of Symbiotic Function in the Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations

Hubert Charles; Séverine Balmand; Araceli Lamelas; Ludovic Cottret; Vicente Pérez-Brocal; Béatrice Burdin; Amparo Latorre; Gérard Febvay; Stefano Colella; Federica Calevro; Yvan Rahbé

Buchnera aphidicola is an obligate symbiotic bacterium that sustains the physiology of aphids by complementing their exclusive phloem sap diet. In this study, we reappraised the transport function of different Buchnera strains, from the aphids Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistaciae and Cinara cedri, using the re-annotation of their transmembrane proteins coupled with an exploration of their metabolic networks. Although metabolic analyses revealed high interdependencies between the host and the bacteria, we demonstrate here that transport in Buchnera is assured by low transporter diversity, when compared to free-living bacteria, being mostly based on a few general transporters, some of which probably have lost their substrate specificity. Moreover, in the four strains studied, an astonishing lack of inner-membrane importers was observed. In Buchnera, the transport function has been shaped by the distinct selective constraints occurring in the Aphididae lineages. Buchnera from A. pisum and S. graminum have a three-membraned system and similar sets of transporters corresponding to most compound classes. Transmission electronic microscopic observations and confocal microscopic analysis of intracellular pH fields revealed that Buchnera does not show any of the typical structures and properties observed in integrated organelles. Buchnera from B. pistaciae seem to possess a unique double membrane system and has, accordingly, lost all of its outer-membrane integral proteins. Lastly, Buchnera from C. cedri revealed an extremely poor repertoire of transporters, with almost no ATP-driven active transport left, despite the clear persistence of the ancestral three-membraned system.


PLOS ONE | 2012

Dickeya dadantii, a Plant Pathogenic Bacterium Producing Cyt-Like Entomotoxins, Causes Septicemia in the Pea Aphid Acyrthosiphon pisum

Denis Costechareyre; Séverine Balmand; Guy Condemine; Yvan Rahbé

Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera). The infection route of the pathogen, and the role and in vivo expression pattern of these toxins, remain unknown. Using bacterial numeration and immunolocalization, we investigated the kinetics and the pattern of infection of this phytopathogenic bacterium within its insect host. We compared infection by the wild-type strain and by the Cyt toxin-deficient mutant. D. dadantii was found to form dense clusters in many luminal parts of the aphid intestinal tract, including the stomach, from which it invaded internal tissues as early as day 1 post-infection. Septicemia occurred soon after, with the fat body being the main infected tissue, together with numerous early infections of the embryonic chains showing embryonic gut and fat body as the target organs. Generalized septicemia led to insect death when the bacterial load reached about 108 cfu. Some individual aphids regularly escaped infection, indicating an effective partial immune response to this bacteria. Cyt-defective mutants killed insects more slowly but were capable of localisation in any type of tissue. Cyt toxin expression appeared to be restricted to the digestive tract where it probably assisted in crossing over the first cell barrier and, thus, accelerating bacterial diffusion into the aphid haemocel. Finally, the presence of bacteria on the surface of leaves hosting infected aphids indicated that the insects could be vectors of the bacteria.


The ISME Journal | 2015

Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia

Lorena Carro; Petar Pujic; Nicole Alloisio; Pascale Fournier; Hasna Boubakri; Anne E Hay; Franck Poly; Philippe François; Valérie Hocher; Peter Mergaert; Séverine Balmand; Marjolaine Rey; Abdelaziz Heddi; Philippe Normand

Actinorhizal plant growth in pioneer ecosystems depends on the symbiosis with the nitrogen-fixing actinobacterium Frankia cells that are housed in special root organs called nodules. Nitrogen fixation occurs in differentiated Frankia cells known as vesicles. Vesicles lack a pathway for assimilating ammonia beyond the glutamine stage and are supposed to transfer reduced nitrogen to the plant host cells. However, a mechanism for the transfer of nitrogen-fixation products to the plant cells remains elusive. Here, new elements for this metabolic exchange are described. We show that Alnus glutinosa nodules express defensin-like peptides, and one of these, Ag5, was found to target Frankia vesicles. In vitro and in vivo analyses showed that Ag5 induces drastic physiological changes in Frankia, including an increased permeability of vesicle membranes. A significant release of nitrogen-containing metabolites, mainly glutamine and glutamate, was found in N2-fixing cultures treated with Ag5. This work demonstrates that the Ag5 peptide is central for Frankia physiology in nodules and uncovers a novel cellular function for this large and widespread defensin peptide family.

Collaboration


Dive into the Séverine Balmand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvan Rahbé

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Febvay

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélien Vigneron

Institut national des sciences Appliquées de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge