Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Séverine Péchiné is active.

Publication


Featured researches published by Séverine Péchiné.


Journal of Bacteriology | 2007

Cwp84, a Surface-Associated Protein of Clostridium difficile, Is a Cysteine Protease with Degrading Activity on Extracellular Matrix Proteins

Claire Janoir; Séverine Péchiné; Charlotte Grosdidier; Anne Collignon

Clostridium difficile pathogenicity is mediated mainly by its A and B toxins, but the colonization process is thought to be a necessary preliminary step in the course of infection. The aim of this study was to characterize the Cwp84 protease of C. difficile, which is highly immunogenic in patients with C. difficile-associated disease and is potentially involved in the pathogenic process. Cwp84 was purified as a recombinant His-tagged protein, and specific antibodies were generated in rabbits. Treatment of multiple-band-containing eluted fractions with a reducing agent or with trypsin led to accumulation of a unique protein species with an estimated molecular mass of 61 kDa, corresponding most likely to mature autoprocessed Cwp84 (mCwp84). mCwp84 showed concentration-dependent caseinolytic activity, with maximum activity at pH 7.5. The Cwp84 activity was inhibited by various cysteine protease inhibitors, such as the specific inhibitor E64, and the anti-Cwp84-specific antibodies. Using fractionation experiments followed by immunoblot detection, the protease was found to be associated with the S-layer proteins, mostly as a nonmature species. Proteolytic assays were performed with extracellular matrix proteins to assess the putative role of Cwp84 in the pathogenicity of C. difficile. No degrading activity was detected with type IV collagen. In contrast, Cwp84 exhibited degrading activity with fibronectin, laminin, and vitronectin, which was neutralized by the E64 inhibitor and specific antibodies. In vivo, this proteolytic activity could contribute to the degradation of the host tissue integrity and to the dissemination of the infection.


Journal of Clinical Microbiology | 2005

Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease.

Séverine Péchiné; Claire Janoir; Anne Collignon

ABSTRACT Pathogen attachment is a crucial early step in mucosal infections. This step is mediated by important virulence factors, such as surface proteins. Clostridium difficile surface proteins have been identified as (i) adhesins (the flagellar cap protein FliD; the flagellin FliC; and the cell wall protein Cwp66 with a two domain-structure [Cw66 N-terminal and Cwp66 C-terminal domains]) and (ii) protease (the Cwp84 protein). To address the roles of these proteins in the pathogenesis of Clostridium difficile and to identify vaccine antigen candidates, we analyzed the variability of the proteins and their immunogenicities in 17 patients with C. difficile-associated disease. PCR-restriction fragment length polymorphism analysis of amplified gene products revealed interstrain homogeneity with fliC and fliD, in contrast to cwp66 genes. Immunoblot analysis showed that FliC and FliD were detected in the majority of isolates. The N-terminal domain of Cwp66 and Cwp84 were present in all strains tested, in contrast to the Cwp66 C-terminal domain, the expression of which was heterogeneous. The 17 sera from the corresponding patients were analyzed by enzyme-linked immunosorbent assay to detect antibodies directed against these proteins. Many patients developed antibodies to FliC, FliD, Cwp84, and the Cwp66 C-terminal domain, but not to the Cwp66 N-terminal domain. In conclusion, this study confirms the expression of these surface proteins of C. difficile during the course of the disease. In addition, the FliC, FliD, and Cwp84 proteins appeared to be good potential vaccine candidates.


Fems Immunology and Medical Microbiology | 2011

Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen

Séverine Péchiné; Cécile Denève; Alban Le Monnier; Sandra Hoys; Claire Janoir; Anne Collignon

Clostridium difficile is a pathogen responsible for diarrhoea and colitis, particularly after antibiotic treatment. We evaluated the C. difficile protease Cwp84, found to be associated with the S-layer proteins, as a vaccine antigen to limit the C. difficile intestinal colonization and therefore the development of the infection in a clindamycin-treated hamster model. First, we evaluated the immune response and the animal protection against death induced by several immunization routes: rectal, intragastric and subcutaneous. Antibody production was variable according to the immunization routes. In addition, serum Cwp84 antibody titres did not always correlate with animal protection after challenge with a toxigenic C. difficile strain. The best survival rate was observed with the rectal route of immunization. Then, in a second assay, we selected this immunization route to perform a larger immunization assay including a Cwp84 immunized group and a control group. Clostridium difficile intestinal colonization and survival rate, as well as the immune response were examined. Clostridium difficile hamster challenge resulted in a 26% weaker and slower C. difficile intestinal colonization in the immunized group. Furthermore, hamster survival in the Cwp84 immunized group was 33% greater than that of the control group, with a significant statistical difference.


European Journal of Pharmaceutics and Biopharmaceutics | 2011

Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile

Chiara Sandolo; Séverine Péchiné; Alban Le Monnier; Sandra Hoys; Claire Janoir; Tommasina Coviello; Franco Alhaique; Anne Collignon; Elias Fattal; Nicolas Tsapis

We have designed an oral vaccine against Clostridium difficile infection. The virulent factor Cwp84, that is a cystein protease highly immunogenic in patients with C. difficile-associated disease, was entrapped within pectin beads. Beads encapsulating Cwp84 were shown to be stable in the simulated intestinal medium and to release the cystein protease once in the simulated colonic medium. Three groups of hamsters were immunized, the first receiving pectin beads encapsulating Cwp84, the second unloaded beads and the third one free Cwp84. After three immunizations by the intragastric route, all groups received clindamycine. Post-challenge survival with a strain of C. difficile showed that 2 days after infection, all hamsters treated with unloaded beads and all hamsters treated with free Cwp84 have deceased after 7 days, whereas about 40% of hamsters administered with Cwp84-loaded beads survived 10 days after challenge, proving that oral vaccination provides partial protection. These first data obtained with an oral vaccine against C. difficile appear promising for preventing this infection.


PLOS ONE | 2013

Immunization Using GroEL Decreases Clostridium difficile Intestinal Colonization

Séverine Péchiné; Claire Hennequin; Céline Boursier; Sandra Hoys; Anne Collignon

Clostridium difficile is a pathogen which is responsible for diarrhea and colitis, particularly after treatment with antibiotics. Clinical signs are mainly due to two toxins, TcdA and TcdB. However, the first step of pathogenesis is the colonization process. We evaluated C. difficile surface proteins as vaccine antigens in the hamster model to prevent intestinal colonization. This vaccination induced a partial protection of hamsters against death after a C. difficile challenge. A proteomic analysis of animal sera allowed us to identify proteins which could be responsible for the protection observed. Among these proteins, we identified the GroEL heat shock protein. To confirm the role of the specific GroEL antibodies in the delayed C. difficile colonization of hamsters, we performed an immunization assay in a mouse model. After intranasal immunization with the recombinant protein GroEL, we observed a lower C. difficile intestinal colonization in the immunized group as compared to the control group.


Expert Opinion on Biological Therapy | 2017

Emerging monoclonal antibodies against Clostridium difficile infection

Séverine Péchiné; Claire Janoir; Anne Collignon

ABSTRACT Introduction: Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.


PLOS ONE | 2017

Clostridium difficile flagellin FliC: Evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile

Jean-François Bruxelle; Assaf Mizrahi; Sandra Hoys; Anne Collignon; Claire Janoir; Séverine Péchiné; Paulo Lee Ho

The immunogenicity of bacterial flagellin has been reported in different studies. By its close interaction with the immune system, the flagellin represents an interesting adjuvant and vaccine candidate. Salmonella Typhimurium flagellin has already been tested as adjuvant to stimulate mucosal immunity. Here, we assessed the ability of Clostridium difficile flagellin FliC to act as a mucosal adjuvant, first combined with ovalbumin as antigen and second with a C. difficile surface protein, the precursor of the S-layer proteins SlpA. Using ovalbumin as antigen, we compared the gut mucosal adjuvanticity of FliC to Salmonella Typhimurium flagellin and cholera toxin. Two routes of immunization were tested in a mouse model: intra-rectal and intra-peritoneal, following which, gut mucosal and systemic antibody responses against ovalbumin (Immunoglobulins G and Immunoglobulins A) were analyzed by Enzyme-Linked Immuno Assay in intestinal contents and in sera. In addition, ovalbumin-specific immunoglobulin producing cells were detected in the intestinal lamina propria by Enzyme-Linked Immunospot. Results showed that FliC as adjuvant for immunization targeting ovalbumin was able to stimulate a gut mucosal and systemic antibody response independently of the immunization route. In order to develop a mucosal vaccine to prevent C. difficile intestinal colonization, we assessed in a mouse model the efficacy of FliC as adjuvant compared with cholera toxin co-administrated with the C. difficile S-layer precursor SlpA as antigen. After challenge, a significant decrease of C. difficile intestinal colonization was observed in immunized groups compared to the control group. Our results showed that C. difficile FliC could be used as adjuvant in mucosal vaccination strategy against C. difficile infections.


Clinical Microbiology Reviews | 2018

Understanding Clostridium difficile Colonization

Monique J. T. Crobach; Jonathan Vernon; Vivian G. Loo; Ling Yuan Kong; Séverine Péchiné; Mark H. Wilcox; Ed J. Kuijper

SUMMARY Clostridium difficile is the main causative agent of antibiotic-associated and health care-associated infective diarrhea. Recently, there has been growing interest in alternative sources of C. difficile other than patients with Clostridium difficile infection (CDI) and the hospital environment. Notably, the role of C. difficile-colonized patients as a possible source of transmission has received attention. In this review, we present a comprehensive overview of the current understanding of C. difficile colonization. Findings from gut microbiota studies yield more insights into determinants that are important for acquiring or resisting colonization and progression to CDI. In discussions on the prevalence of C. difficile colonization among populations and its associated risk factors, colonized patients at hospital admission merit more attention, as findings from the literature have pointed to their role in both health care-associated transmission of C. difficile and a higher risk of progression to CDI once admitted. C. difficile colonization among patients at admission may have clinical implications, although further research is needed to identify if interventions are beneficial for preventing transmission or overcoming progression to CDI.


Methods of Molecular Biology | 2016

Clostridium difficile Adhesins.

Séverine Péchiné; Cécile Denève-Larrazet; Anne Collignon

Clostridium difficile is responsible for a large spectrum of intestinal diseases ranging from mild diarrhea to fatal colitis depending on the one hand on the strain virulence and on the other on the host. The pathogenesis of C. difficile infection could be seen as a three-step process that takes place after disruption of the digestive microbiota by antibiotics: (1) contamination by and germination of spores; (2) multiplication of vegetative cells in the colonic niche using colonization factors; (3) production of the two toxins TcdA and TcdB and for some strains an additional toxin, the binary toxin CDT. Several studies have been performed to characterize the bacterial factors involved in the colonization step and particularly adhesins.Here, we describe first the methods used to study C. difficile adherence in vitro to epithelial cells and in vivo in animal model intestinal tract, and second the methods used to demonstrate the adhesive properties of surface proteins using Cwp66, GroEL, and FbpA as examples.


Vaccine | 2018

Protection against Clostridium difficile infection in a hamster model by oral vaccination using flagellin FliC-loaded pectin beads

J.F. Bruxelle; Nicolas Tsapis; Sandra Hoys; Anne Collignon; Claire Janoir; Elias Fattal; Séverine Péchiné

Clostridium difficile flagellin FliC is a highly immunogenic pathogen-associated molecular pattern playing a key role in C. difficile pathogenesis and gut colonization. Here, we designed an oral vaccine against C. difficile with FliC encapsulated into pectin beads for colonic release. Bead stability and FliC retention was confirmed in vitro using simulated intestinal media (SIM), while bead degradation and FliC release was observed upon incubation in simulated colonic media (SCM). The importance of FliC encapsulation into pectin beads for protection against C. difficile was assessed in a vaccination assay using a lethal hamster model of C. difficile infection. Three groups of hamsters orally received either FliC-loaded beads or unloaded beads in gastro-resistant capsule to limit gastric degradation or free FliC. Two other groups were immunized with free FliC, one intra-rectally and the other intra-peritoneally. Hamsters were then challenged with a lethal dose of C. difficile VPI 10463. Fifty percent of hamsters orally immunized with FliC-loaded beads survived whereas all hamsters orally immunized with free FliC died within 7 days post challenge. No significant protection was observed in the other groups. Only intra-peritoneally immunized hamsters presented anti-FliC IgG antibodies in sera after immunizations. These results suggest that an oral immunization with FliC-loaded beads probably induced a mucosal immune response, therefore providing a protective effect. This study confirms the importance of FliC encapsulation into pectin beads for a protective oral vaccine against C. difficile.

Collaboration


Dive into the Séverine Péchiné's collaboration.

Top Co-Authors

Avatar

Anne Collignon

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Hoys

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Tsapis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Mizrahi

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge