Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sevim Kahraman is active.

Publication


Featured researches published by Sevim Kahraman.


Cell Metabolism | 2016

SerpinB1 Promotes Pancreatic β Cell Proliferation

Abdelfattah El Ouaamari; Ercument Dirice; Nicholas Gedeon; Jiang Hu; Jian-Ying Zhou; Jun Shirakawa; Lifei Hou; Jessica Goodman; Christos Karampelias; Guifeng Qiang; Jeremie Boucher; Rachael Martinez; Marina A. Gritsenko; Dario F. De Jesus; Sevim Kahraman; Shweta Bhatt; Richard D. Smith; Hans-Dietmar Beer; Prapaporn Jungtrakoon; Yanping Gong; Allison B. Goldfine; Chong Wee Liew; Alessandro Doria; Olov Andersson; Wei Jun Qian; Eileen Remold-O’Donnell; Rohit N. Kulkarni

Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.


Diabetes | 2014

Soluble factors secreted by T-cells promote β-cell proliferation

Ercument Dirice; Sevim Kahraman; Wenyu Jiang; Abdelfattah El Ouaamari; Dario F. De Jesus; Adrian Kee Keong Teo; Jiang Hu; Dan Kawamori; Jason L. Gaglia; Diane Mathis; Rohit N. Kulkarni

Type 1 diabetes is characterized by infiltration of pancreatic islets with immune cells, leading to insulin deficiency. Although infiltrating immune cells are traditionally considered to negatively impact β-cells by promoting their death, their contribution to proliferation is not fully understood. Here we report that islets exhibiting insulitis also manifested proliferation of β-cells that positively correlated with the extent of lymphocyte infiltration. Adoptive transfer of diabetogenic CD4+ and CD8+ T cells, but not B cells, selectively promoted β-cell proliferation in vivo independent from the effects of blood glucose or circulating insulin or by modulating apoptosis. Complementary to our in vivo approach, coculture of diabetogenic CD4+ and CD8+ T cells with NOD.RAG1−/− islets in an in vitro transwell system led to a dose-dependent secretion of candidate cytokines/chemokines (interleukin-2 [IL-2], IL-6, IL-10, MIP-1α, and RANTES) that together enhanced β-cell proliferation. These data suggest that soluble factors secreted from T cells are potential therapeutic candidates to enhance β-cell proliferation in efforts to prevent and/or delay the onset of type 1 diabetes.


Human Gene Therapy | 2009

Adenovirus-Mediated TRAIL Gene (Ad5hTRAIL) Delivery into Pancreatic Islets Prolongs Normoglycemia in Streptozotocin-Induced Diabetic Rats

Ercument Dirice; Ahter Dilsad Sanlioglu; Sevim Kahraman; Saffet Ozturk; Mustafa Kemal Balci; Abdulkadir Omer; Thomas S. Griffith; Salih Sanlioglu

Type 1 diabetes (T1D), characterized by permanent destruction of insulin-producing beta cells, is lethal unless conventional exogenous insulin therapy or whole-organ transplantation is employed. Although pancreatic islet transplantation is a safer and less invasive method compared with whole-organ transplant surgery, its treatment efficacy has been limited by islet graft malfunction and graft failure. Thus, ex vivo genetic engineering of beta cells is necessary to prolong islet graft survival. For this reason, a novel gene therapy approach involving adenovirus-mediated TRAIL gene delivery into pancreatic islets was tested to determine whether this approach would defy autoreactive T cell assault in streptozotocin (STZ)-induced diabetic rats. To test this, genetically modified rat pancreatic islets were transplanted under the kidney capsule of STZ-induced diabetic rats, and diabetic status (blood sugar and body weight) was monitored after islet transplantation. STZ-induced diabetic rats carrying Ad5hTRAIL-infected islets experienced prolonged normoglycemia compared with animals grafted with mock-infected or AdCMVLacZ-infected islets. In addition, severe insulitis was detected in animals transplanted with mock-infected or AdCMVLacZ-infected islets, whereas the severity of insulitis was reduced in animals engrafted with Ad5hTRAIL-infected islets. Thus, TRAIL overexpression in pancreatic islets extends allograft survival and function, leading to a therapeutic benefit in STZ-induced diabetic rats.


American Journal of Physiology-endocrinology and Metabolism | 2014

Maternal insulin resistance and transient hyperglycemia impact the metabolic and endocrine phenotypes of offspring

Sevim Kahraman; Ercument Dirice; Dario F. De Jesus; Jiang Hu; Rohit N. Kulkarni

Studies in both humans and rodents suggest that maternal diabetes leads to a higher risk of the fetus developing impaired glucose tolerance and obesity during adulthood. However, the impact of hyperinsulinemia in the mother on glucose homeostasis in the offspring has not been fully explored. We aimed to determine the consequences of maternal insulin resistance on offspring metabolism and endocrine pancreas development using the LIRKO mouse model, which exhibits sustained hyperinsulinemia and transient increase in blood glucose concentrations during pregnancy. We examined control offspring born to either LIRKO or control mothers on embryonic days 13.5, 15.5, and 17.5 and postpartum days 0, 4, and 10. Control offspring born to LIRKO mothers displayed low birth weights and subsequently rapidly gained weight, and their blood glucose and plasma insulin concentrations were higher than offspring born to control mothers in early postnatal life. In addition, concentrations of plasma leptin, glucagon, and active GLP-1 were higher in control pups from LIRKO mothers. Analyses of the endocrine pancreas revealed significantly reduced β-cell area in control offspring of LIRKO mothers shortly after birth. β-Cell proliferation and total islet number were also lower in control offspring of LIRKO mothers during early postnatal days. Together, these data indicate that maternal hyperinsulinemia and the transient hyperglycemia impair endocrine pancreas development in the control offspring and induce multiple metabolic alterations in early postnatal life. The relatively smaller β-cell mass/area and β-cell proliferation in these control offspring suggest cell-autonomous epigenetic mechanisms in the regulation of islet growth and development.


Experimental Diabetes Research | 2011

TRAIL and DcR1 Expressions Are Differentially Regulated in the Pancreatic Islets of STZ- versus CY-Applied NOD Mice

Ercument Dirice; Sevim Kahraman; Gulsum Ozlem Elpek; Cigdem Aydin; Mustafa Kemal Balci; Abdulkadir Omer; Salih Sanlioglu; Ahter Dilsad Sanlioglu

TNF-related apoptosis-inducing ligand (TRAIL) is an important component of the immune system. Although it is well acknowledged that it also has an important role in Type 1 Diabetes (T1D) development, this presumed role has not yet been clearly revealed. Streptozotocin (STZ) and Cyclophosphamide (CY) are frequently used agents for establishment or acceleration of T1D disease in experimental models, including the non-obese diabetic (NOD) mice. Although such disease models are very suitable for diabetes research, different expression patterns for various T1D-related molecules may be expected, depending on the action mechanism of the applied agent. We accelerated diabetes in female NOD mice using STZ or CY and analyzed the expression profiles of TRAIL ligand and receptors throughout disease development. TRAIL ligand expression followed a completely different pattern in STZ- versus CY-accelerated disease, displaying a prominent increase in the former, while appearing at reduced levels in the latter. Decoy receptor 1 (DcR1) expression also increased significantly in the pancreatic islets in STZ-induced disease. Specific increases observed in TRAIL ligand and DcR1 expressions may be part of a defensive strategy of the beta islets against the infiltrating leukocytes, while the immune-suppressive agent CY may partly hold down this defense, contributing further to diabetes development.


Journal of Proteome Research | 2015

Compensatory islet response to insulin resistance revealed by quantitative proteomics

Abdelfattah El Ouaamari; Jian Ying Zhou; Chong Wee Liew; Jun Shirakawa; Ercument Dirice; Nicholas Gedeon; Sevim Kahraman; Dario F. De Jesus; Shweta Bhatt; Jong-Seo Kim; Therese R. Clauss; David G. Camp; Richard D. Smith; Wei Jun Qian; Rohit N. Kulkarni

Compensatory islet response is a distinct feature of the prediabetic insulin-resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from 5 month old male control, high-fat diet fed (HFD), or obese ob/ob mice by LC-MS/MS and quantified ~1100 islet proteins (at least two peptides) with a false discovery rate < 1%. Significant alterations in abundance were observed for ~350 proteins among groups. The majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and western blots, respectively. The insulin-resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin-resistant models. In summary, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin-resistant rodent models that are not overtly diabetic. These data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, under accession no. MSV000079093.


Diabetes-metabolism Research and Reviews | 2011

Tracing of islet graft survival by way of in vivo fluorescence imaging.

Sevim Kahraman; Ercument Dirice; Fatma Zehra Hapil; Mustafa Gokhan Ertosun; Saffet Ozturk; Thomas S. Griffith; Salih Sanlioglu; Ahter Dilsad Sanlioglu

To increase the success rate in xenogeneic islet transplantation, proper assessment of graft mass is required following transplantation. For this reason, we aimed to develop a suitable fluorescence imaging system to monitor islet xenograft survival in diabetic mice.


Experimental Diabetes Research | 2015

Diabetes-Resistant NOR Mice Are More Severely Affected by Streptozotocin Compared to the Diabetes-Prone NOD Mice: Correlations with Liver and Kidney GLUT2 Expressions

Sevim Kahraman; Cigdem Aydin; G. O. Elpek; Ercument Dirice; Ahter Dilsad Sanlioglu

Nonobese Diabetic (NOD) mice are susceptible strains for Type 1 diabetes development, and Nonobese Diabetes-Resistant (NOR) mice are defined as suitable controls for NOD mice in non-MHC-related research. Diabetes is often accelerated in NOD mice via Streptozotocin (STZ). STZ is taken inside cells via GLUT2 transmembrane carrier proteins, the major glucose transporter isoforms in pancreatic beta cells, liver, kidneys, and the small intestine. We observed severe adverse effects in NOR mice treated with STZ compared to NOD mice that were made diabetic with a similar dose. We suggested that the underlying mechanism could be differential GLUT2 expressions in pancreatic beta cells, yet immunofluorescent and immunohistochemical studies revealed similar GLUT2 expression levels. We also detected GLUT2 expression profiles in NOD and NOR hepatic and renal tissues by western blot analysis and observed considerably higher GLUT2 expression levels in liver and kidney tissues of NOR mice. Although beta cell GLUT2 expression levels are frequently evaluated as a marker predicting STZ sensitivity in animal models, we report here very different diabetic responses to STZ in two different animal strains, in spite of similar initial GLUT2 expressions in beta cells. Furthermore, use of NOR mice in STZ-mediated experimental diabetes settings should be considered accordingly.


Current Diabetes Reports | 2016

Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes

Sevim Kahraman; Erin R. Okawa; Rohit N. Kulkarni

Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.


Neuromuscular Disorders | 2017

Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis

Irem Kanatli; Bahar Akkaya; Hilmi Uysal; Sevim Kahraman; Ahter Dilsad Sanlioglu

Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed.

Collaboration


Dive into the Sevim Kahraman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge